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ABSTRACT

It is shown that all the variables needed for a classical
description of the dynamical behavior of a fluid consisting of
electrically charged particles having spin can be incorporated
into two spinors having a total of four complex elements. The
particle spin is included, not because it plays any significant
role in maénetogas—dynamical problems, but because it is needed
to account for all the degrees of freedom of the spinors,

The link bgtweéﬁ thg spinors and the familiar quantities
that describe the fluid is'provided by the "particle tetrapéd"
consisting of one time-like and three space-like l-vectors.
These four vqctbrs constitute an orthonormal system and are
normalized to the particle density of the fluid in its local
rest-frame, The time-like vector is identified with the flux
density of the fluid; one space»likg vector is used to specify
the orientation of the ﬁarticlé spin axis; and thévremaining
degree of freedom, an angle, is éostulated to be proportional
to the de Broglie phase, the proportionality constant being
Planck's constant.

Incorporating the de Broglie phase into the. tetrapod has
two consequences: First, Planck's constant is introduced into

the formalism. Second, because the canonical momentum is the
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gradient of the de Broglie phase, the tetrapod contains all the
information needed for a dynamical, as well as a kinematicel,
description of the fluid,

It is shown that the vectors of the tetrapcd can be generated
by four different bilinear forms involving the elements of two
spinors and their complex conjugates. In this sense, the spinors
may be regarded as the '"squere roots" of the tetrapod. The phase
angle common to the two spinors is the only one of the eight
degrees of freedom of the spinors thet does not make itself felt
in generating the tetrapod. This phase angle is used to specify the
sign of the particle charge. |

If the spinors that describe the fluid satisfy a firsti-order
linear partial differential equation that involves the 4-vector
electromagnetic potential and the particle mass, regarded as a
linear function of the gravitational potentisl and the specific
enthalpy, then it turns out that, for the case of‘adiabatic flow,
the quantities involved in the tetrapod automatically satisfy a
4-vector equation that has the-form of the relativistic Euler
equation in the presence of electromagnetic, grévitational, and
pressure fields. ©Spin-dependent forces proportional to Plaﬁck's
constant also appear in this equation but, for problems on an

macroscopic scale, these forces are completely negligible., It
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is shown that it is possible to drop the condition of adiabatic
flow, and admit fluid viscosity, or energy injection or loss

(e.g. through nuclear reactions or radiation, respectively),
without changing the form of the spinor equation to be solved.

Only the form of the equation that determines the specific enthalpy
in terms of other fluid quantities is altered.

Because the spinor equation is linear for the case of
gravitapional, electromagnetic, and thermal fields regarded as
fixed functions of the space-time coordinates, whereas the
cerresponding Euler equation is nonlinear, it is suggested that
use of the spinor alternative to the Euler eqﬁation would
facilitate the solution of the complete magnetogas-dynamical
problem, involving both fluid-dynamical and fieid equatioﬁs, by
means of a straight-forward iteration procedure. This approach
should be especially fruitfui in the case of the self-excited
dynamo problem, and it is in terms of this problem that the physical
interpretation of the formalism is made.

The spinor alternative to Euler's equation has the form of
the Dirac equation, except that the particle mass is regarded
as a scalar function of the space-time coordinates, rather than
a constant. The theory, however, except for the incorporation of

the de Broglie phase into the tetrspod, is completely classical
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in spirit. In particular, no quantization process, and nothing
corresponding to the Exclusion Principle have been introduced

into the formalism, Thus the theory developed here could not be
expected to yield valid solutions for problems in which the charged
fluid should become degenerate as, for instance, at the centers

of certain stars.

As a preliminary to the introduction of the particle tetrapod
and the spinor equation, consideration is given to the relativistic
problem of electron and proton gases interacting with the gravita-
tional, electromagnetic, and pressure fields produced by these
same charged gases. The analysis is first carried out without
particle spin, and is then modified to take spin effects into
account, Finally, the particle tetrapod and the spinor equation
are introduced. The detailed mathematical work involving spinors
is relegated to an appendix, only the results being summarized
and interpreted in the body of the paper, an understanding of

which requires no prior knowledge of spinor analysis.
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SPINOR FORMULATION OF MAGNETOGAS DYNAMICS

I TINTRODUCTION

Self-Excited Dynamo

The basic equations of magnetogas dynamics are composed of two
categories of equations: the fluid-dynamical equations, and the
field equations. It is the purpose of thisbpaper to develop a new
formulation of the fluid-dynamical equations that will simplify the
problem of the simultaneous solution of the fluid;dynamical and
field equations. Although this new formulation will be applicable
to‘a wide range of problems, the problem we shall use as a guide
in discussing physical questions will be that of an isolated spheriod
of fully ionized plasma whose fluid and electric currents are such
that it constitutes a self-excited dynamo. A discussion of this
type problem and review of the literature has beén given byA
Elsasser(l))and in a more condensed form by Cowling(2).

The only serious attempt ét a guantitative solution of this
problem has been the one carried out by Bullard and his colla-
borators(3). In this calculation the fluid dynamical half of the
problem was neglected, except for imposing the continuity condition.
The calculation assumes an incompressible fluid (cofe of the earth),
and so would not be valid, except in a qﬁalitative way, for a star.

Because of the immense difficulty of the calculation, it was
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necessary to truncate the harmonic expansion of the solution
after the first few terms, and for this reason the solution is
only approximate and some doubt remains concerning its convergence.
Finally, the calculation was carried out for only one possible flow
pattern. Other patterns, possibly of great physical interest,
have not.as yet been attempted. Calculations [(L4) and (5)] have
been made, however, for two other flow patterns that do not pre-
tend to resemble the actual flow within the earth's core. The
primary purpose of these calculations was merely to demonstrate the
possibility of the existence of a self-excited dynamo in a homo-
geneous, dissipative, conducting sphere. Accordingly, the flow
patterns were chosen to facilitate the calculation rather than (as
in Bullard's calculation) to resemble a possible flow pattern in
the core of the earth. These calculations, like Bullard's, neg-
lected the dynamical half of the problem except for the condition
that the fluid flow be solenoidal.

The extreme difficulty of these calculations clearly illus-
trates the desirability of finding an alternative formulation of

magnetogas dynamics that will ease the calculational burden.

Two-Fluid Formulation of the Problem

Rather than formulate the problem in terms of a single conduct-

ing fluid through which an electric current flows, we shall work with
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two electrically charged fluids - the electron and proton gases.
(Simply by changing the particle mass, we would have a gas of posi-
tive ions, instead of a proton gas.) This two-fluid approach is
more rigorous than the single-fluid approach in that it obviates the
need to introduce the conductivity which under certain conditions
becomes an untenable concept.

The electron and proton gases are postulated to be independent
perfect gases that interact only through common gravitational and
electromagnetic fields. The partial pressures of the two charged
gases are taken into account, but viscosity 1s neglected. Each
of the charged fluids must independently satisfy Euler's equation,

which is Jjust the expression of Newton's second law for the fluid.

Sources of Nonlinearity

The magnetogas—dynamical'problem is intrinsically nonlinear
inasmuch as the interaction of the electron and proton gases with
each other, and the self-interaction of each, means that super-
posability of solutions is not possible. However, even when we
eliminate the interaction by requiring that the gravitational,
electromagnetic, and pressure fields be.fixed functions of the space-
time coordinates (i.e., independent of the fluid flow solutions),
we find that Euler's equation is still nonlinear because it con-

tains terms that are quadratic in the fluid velocity. Because we
[ ]
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know from physical reasoning that in the case of fixed fields
superposa.bility of solutions is possible, it would appear that the
nonlinearity in Euler's equation caused by the terms that are quad-
ratic in velocity must be spurious in the sense that there must exist
an alternative way to formulate the fluid-dynemical problem that would
be linear for the case of fixed fields.

We shall see that it is possible to replace Euler's equation by
an equivalent spinor equation that is just the desired linear alter-
native (in the case of fixed fields). Having this linear alternative
to Buler's equation, a straight-forward iteration solution of the
total magnetogas-dynamical problem is now possible: We start with
a zero-order solution of the linear spinor equations (one for each
of the two charged fluids), for a certain choice of zero-order fields;
we use this solution to determine the zero-order source terms in the
field equations; we solve the field equations for the first-order
corrections to the fields, which we then use in the spinor equations
to calculate the first-order corrections to the fluid flow of the
electron and proton gases; then the whole process is repeated as
many times as needed to give the desired accuracy. Such a straight-
forward iteration procedure would be impossible using Euler's equa-
tion instead of the spinor equation. because the solution of the fluid
flow for the case of given fixed fields would be blocked by the

nonlinearity of Euler's equation arising from the terms that are
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quadratic in velocity.

Spinor Eguations of Motion

As a prerequisite for deriving the spinor equations, we must
introduce the electron and proton spin as additional degrees of
freedom. ©Since particle spin plays no significant role in mag-
netogas-dynamical problems, it would seem that this is an unneces-
sary complication of an already too complicated problem. In actual
fact, howéver, in the solution of a problem like the self-excited
dynamo, the introduction of spin coordinates does not increase the
calculational difficulty because it merely means that we work with
an expansion in spinor harmonics instead of an expansion of vector
harmonics.

We shall see that it is possible to regard the spinors that
describe the electrongas, for example, as the "square roots" of the
electron flux density 4-vector. In the same way that we find that
taking the square root of a real number gives us an extra degree of
freedom (the sign of the root) that must be specified by some
physical condition, taking the "square root" of the flux L-vector
gives rise to extra degrees of freedom,yamong which are those cor-
responding to particle spin. Thus, the introduction of particle spin
is the nccessary price we mgst pay for the convenience of working

with the linear spinor equation, rather than with the nonlinear
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Euler (4-vector) equation.

We shall find that the spinor equations of motion have the
form of the Dirac equation in which the particle mass, instead of
being a constant, is a scalar function of the space-time coordinates
that includes the mass per particle associated with the gravitational
and thermal energy of the fluid, as well as the constant rest-mass
of the particle. In spite of the fact that the spinor equation of
motion has the form of the Dirac equation, the theory developed
in this paper is purely classical (except for the fact that it
incorporates the de Broglie Hypothesis, whichnintroduces Planck's
constant into the theory). In particular, no quantization pro-
cess is introduced. Thus the Exclusion Principle, and consequently
degeneracy of the electron and proton gases at high densities, do
not follow from the theory.

In recent years there has been an increased interest in the
problem of findingiblassical interpretation of the Dirac equation.
Noteworthy in this respect is the long paper by Takebayasi(6),
and the book by Halbwachs(7) in which most of the work up to 1960
is reviewed. More recent work has been done by Schiller(8) and by
Grossmann and Peres(9). (The latter reference gives a bibliography
for the most recent work.) All this work differs from the theory

developed in this paper in that the authors cited were ultimately

A}
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concerned with finding a deeper or more intuitively appealing inter-
pretation of qguantum mechanics, rather than in the simplification
of the equations of classical magnetogas dynamics. Thus, although
some formal similarities exist between the present work and certain
of the papers cited, vital differences also exist, with the result
that any comparison must be made with great care. In any case,

the present paper is intended to be self-contained and no use is

made of any previous work.

Assumptions and Approximations

A realistic solution of the self-excited dynamo problems
corresponding to the sun or the core of the earth would involve
takiﬁg into account many detailed and complicated physical‘effects,
some of which are not well understood. Such a detailed program
would be premature. Rather, we shall aim at solving a well-defined,
relatively simple idealization that, with only minor modifications
can be brought into close enough correspondence with the real problems
occurring in nature to afford some physical insight. We shall
now discuss the assumptions and approximations that define this
idealization.

First, we treat the electron and proton gases as fluids, rather
than as distributions of pa?ticles having different velocities,

spins, ctc. ws, for example, at a given point of space-time,
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there is only a single electron velocity, and this velocity is a
continuous function of the space-time coordinates.

Further, we postulate that the electron and proton gases are
perfect, classical (no degeneracy) gases.

We postulate that we have at every point of space-time a
fully ionized plasma in which the electrons and protons (or positive
ions) are individually conserved.

We shall neglect fluid viscosity (but not pressure). This is
a valid approximetion in situations such as we find in the interior
of the sun and earth's core, since in such cases the magnetic forces
are very large compared with the viscous forces. In the case of very
tenuous plasmas, such as we find in the corona of the sun, or in
interstellar space, this is no longer true, and it would be neces-
sary to take viscosity into account. This can be done in fact,
by means of a relatively minor modification of the theory, which is
discussed in Appendix A. For the sake of definiteness, however, we
assume throughout the body of the paper that fluid viscosity may be
neglected.

We impose two different adiabatic conditions: first, we postu-
late that a given bubble of electron or proton gas loses or gains no
heat energy. Second, we postulate that if we were to make a smali

adiabatic virtual displacement of a given bubble of gas into a
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neighboring position, then the bubble will have the same thermodynamic
properties as the fluid surrounding its new position. We shall see
that for quasistatic (i.e., reversible) flow, these two adiabatic
conditions can be combined into the single condition that the
Y-gradient of the specific entropy vanish. This means that the
specific entropy is constant throughout the gas for all time.

The adiabatic condition with respect to virfual displacement
of a bubble of gas is a natural one, since it corresponds to the fact
that evén though the macroscopic flow is well-ordered, there is
always small-scale turbulence that tends to maintain the assumed
adiabatic condition.

The assumption that a given bubble of gas gains or loses no
heat energy as time goes by is less realistic inasmuch as it neglects
energy lost through radiation and the possibility of energy injection
through nuclear reactions or some other mechanism. Moreover, we are
neglecting heat gained or lost by conduction. It is, in fact, not
difficult to modify the theory so as to allow for energy injection
or loss. The way in which this can be done is discussed in Appendix
A. For definiteness, however, through the body of the paper we shall
neglect the possibility of energy loss or injection. We Justify this
by taking the point of view that we divide the total problem into two

steps: (1) Solution of the dynamical problem subject to the adiabatic
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condition; (2) Solution of the energy balance problem subJject to the
assumption that dropping the adiabatic condition has no effect on
the dynamical solution other than to cause a slow change in its
parameters (e.g., the slow expansion or contraction of a star).

This two-step point of view i1s illustrated in Figure 1: On

the left side is shown a possible flow pattern

Figure 1 —~ Heat Transfer Associated with Convection
in the sun or the earth's core. Fluid rises from the center C in
the equatorial plane, flows along the surface through a typical sur-
face point S to the poles, where it returns to the center. On the
right side of Figure 1 is shown the pressure (P) vs. specific volume

(Vl) plot for a typical bubble of fluid that goes through a complete
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cycle in the indicated flow pattern. The points C and S on the P-v,;
plot indicate the thermodynamic state of the bubble at the corres-
ponding points in the flow pattern. Thus, assuming the adiabatic
condition, we note that as the bubble moves from the center C to

the surface S, on the P-V, plot it moves downward from C to S, cor-
responding to an expansion.. The return trip to the center of the
core carries it along the same path in the P—Vl‘plot back to the point
C. Thus, on the outward trip, the bubble performs an amount of work
equal to the area under the curve C-S; that is)heat energy in this
amount is converted into some other form of energy, notably elec-
tromagnetic energy, But on the return trip the bubble retrieyes this
energy, so there is . no net transfer to electromagnetic field.

Now let us imagine that, when the bubble is at C, an amount of
energy Qi is injected isothermally by means of a nuclear reaction so
that while the bubble is still at the center of the core C, it
traverses the isothermal C-C’. Then it‘expands adiabatically
reaching the surface in the thermodynamic state s’. At the surface
it isothermally radiates the energy Qo, and then traverses the
path 5-C back to the center. Thus we have a Carnbt cycle in which
the net amount of energy W is transferred to the electromagnetic
field to compensate losses due to Joule heating.

The two-step procedure mentioned above for solving the total
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problem is valid only if the Carnot cycle is very narrow. In such
a case, the energy injection and loss will have no appreciable
effect on the dynamics of the problem. This amounts to assuming
that the energy injected and radiated during each cycle is small
compared with the adiabatic work performed during the trip from the
center to the surface. Obviously, this will not be the case if
energy is injected too quickly. 1In such cases the energy injection
does affect the dynamical problem, and it is necessary to modify
the theory in the manner discussed in Appendix A.

As a final observation concerning the adiabatic condition, we
note that, since this condition is applied to the electron and
proton gases independently, it would seem that we are assuming that
there is no energy transfer between the two gasesj that is, we are
assuming that the thermodynamic properties’in particular the temp-
eratures, of the two gases are completely independent. We shall
find, however, that it follows as a consequence of the approximate
equality of the two gas densities that’if the temperatures are
approximately equal at one point in space-time, then they must be
approximately equal everywhere. The approximate equality of the two
charged gas densities is, of course, automatically maintained by
the fact that strong electric fields cannot exist in a plasma. The

approximate equality of the two temperatures at a single point,

such as the center of the sun or earth's core, must be imposed as
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a boundary condition.

Completing the 1list of approximations that define our idealized
model, we note that we employ a scalar theory of gravitation which,
although it is a covariant theory, will not give the correct higher-
order velocity dependence (such as we encoﬁnter in computing the
advance of the perihelion of Mercury). This requires a theory based
cn a symmetric tensor, as in General Relativity; rather than one
based on a scalar potential.

A scalar theory, however, is perfectly adequate for the needs of
magnetogas dynamics. We shall also violate the BEquivalence Principle
as far as the mass assocliated with electromagnetic, thermal, and
gravitational energy is concerned. That is, although all these
contributions will be included in the inertial mass, they.will
not be included in either the active or passive gravitational mass,
for which we use just the reét—mass. This approximation should also
be adequate for the needs of almost all of the existing problems in

magnetogas dynamics.

Plan of Presentation

As a preliminary to writing down the fundamental equation of
motion for each of the two charged fluids (Euler's equation), it is
shown in Section II that the necessary thermal properties of each

fluid can be completely described in terms of the specific enthalpy
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of the fluid and the particle density. The great advantage of
doing this is that the pressure term in Euler's equation can then
be replaced by the gradient of the specific enthalpy, which then.plays
the role of a "thermal potential function' that is completely analogous .
to the scalar gravitational potential. This fact allows us to ab-
sorb both the gravitational and the thermal energy into the particle
rest-mass, which is regarded as a scalar function of the space-time
coordinates. In this way the particle rest-mass is made to play a
dual role : It describes the inertial property of the particle, and
at the same time serves as a potential function for the scalar force
fields acting on the particle. In Appendix A, it is shown that
this procedure has the added advantage that, when we replace the
adiabatic condition by one that allows for fluid viscosity or energy
injection, the form of Euler's equation (or the spinor equation that
replaces it) remains unchanged. Only the form of the "thermal
field equation"”, i.e.., the equation that determines the specific
enthalpy as a function of the fluid variables, is altered. This
same remark is also valid if we drop the assumption that the two
charged fluids are perfect gases.

After writing down Euler's equation in terms of specific enthalpy
instead of pressure, the rest of Section II is devoted to showing

that, if we limit ourselves to a certain subset of solutions that
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correspond to imposing certain physically reasonable conditions,
Euler's equation can be replaced by a tensor equation that is linear
except for the fact that the quadratic normalization condition for
the L4-velocity must be satisfied.

In Section III, it is shown that itvis this tensor equation,
rather than Euler's equation,that results from the Hamilton-Jacobi
formulation of the problem. In order to make fhe discussion more
_physical (as well as to simplify it), the Hamilton-Jacobi formulation
is présented simply as the implementation of the deBroglie Hypothesis,
regarded as an experimental fact.

The conclusion drawn from Sections II and III is that the ten-
sor equation is more fundamental than Euler's.equation. In Section
VIII it is shown that the spinor equations correspond to the tensor
equation, rather than directly to Euler's eéuation. (Any solution
of the tensor equation, of course, is a solution of Euler's equa-
tion, although the converse in general is not true.)

In Section IV the electromagnetic and gravitational field
equations are presented.

In Section V the changes in the fluid—dynaﬁical equations that
result when we introduce particle spins are discussed.

Section VI is a summary of the results of the preceding sec-

tions, all of which have been derived within the framework of
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Special Relativity, but without any mention of spinors.

In Section VII spinors are introduced as the '"square roots" of
4 -vectors, and all the necessary dynamical quantities are defined
in terms of spinors. The discussion is intended to be self-con-
tained, and no prior knowledge of spinor analysis is assumed.

In Section VIII the postulated spinor egquation of motion is
presented, and the corresponding scalar, vector, and tensor equa-
tions that follow as direct consequences of the spinor equation and
the definitions of Section VII are presented and discussed. The
identification of these equations with the equations of magnetogas
dynamics that were summarized in Section VI is made, and the ad-
vantages of the spinor formulation are discussed. No prior know-
ledge of spinor analysis is necessary to follow the discussion of
this section. The detailed derivation of the results presented in this
section is given in Appendix C, and here some familiarity with spinor

analysis is assumed.

Choice of Metric

A1 the work of this paper is done within the framework of
Special Relativity. The metric tensor ng that is used throughout

is chosen to have the following form:

o0 _ _1: g9d _ _ 4. Sk _
g - goo - l’ g b gjj - lJ g = gjk =0
(1-1)

(3,k =1, 2, 3) § # k




17 Sec. I

This choite of métrio,whichﬁis'the most convénient for the transition

to spinors, means that the spatial components of the contravariant

and covariant forms of a 4-vector differ by a sign. We shall always

identify the contravariant form as being the four-dimensional gen-
eralization of the corresponding 3-vector. (The only exception is the

gradient operator, discussed below.) Thus, if,ﬁiis the particle

J

3-velocity, the L-velocity uY has the following form:

e 1 _ . .
[V - A B =%
(1-2)
iouw
w=s -t = - us (321,02, 3)

dJ

Note that this specification of u“ corresponds to a normalization

to unity, rather than to c2:

uju = 1 (1-3)

Because (x!, x2, x°)

(rather than the covariant components)
are identified with the coordinates (x, y, z), it follows that the

covariant form of the gradient operator aj (rather than the contra-

variant form aJ) is the generalization of the 3-gradient v = (ax,ay,az):
=9 _x°
ao edt 3
(1-4)
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and

Vo= (3 3y 3,) = (31, 32, 33) (1-5)

The d'Alembertian operator (] is defined in terms of the l4-gradient

aj as follows:

. N2 -

We shall have occasion to use the completely antisymmetric

unit tensor § 13kt

, which is zero if any two of its indices are
equal, and +1 or -1 1if the indices are all different and their
order differs from the order (o 1 2 3) by an even or odd number
of transpositions respectively. The covariant form of the anti-

symmetric unit tensor E;i is derived from the contravariant form

k4
£ mnpq'according to the usual rule:
. mnpq 1
€ ikt = Bim Bin Bkp B1q © (1-7)

This relation has the consequence that the definition of the co-
variant form of the tensor differs by a sign from that of the

contravariant form. Thus & £ 5k is -1 (instead of +1) when the
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order of the indices (ijkt) differs from the order (0 1 2 3) by an
even number of transpositions.
. s . ijke .

Inasmuch as the definition of the contravariant form ¢ is
Just the extension of the familiar three-dimensional antisymmetric
unit tensor, whereas the definition of the covariant form differs
by a sign, we see that these definitions are consistent with the
general rule that it is the contravariant form of a quantity,

rather than the covariant form, that we regard as the generalization

to four dimensions of the corresponding three-dimensional quantity.
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Thermodynamic Properties

As a preliminary tc writing down the Euler equation for each
of the charged fluids, we shall first consider the thermodynamic
properties of the fluids. All these properties will appear in dup-
licate, one for each fluid. This fact will be indicated by the
symbol (+) used usually as a subscript, but sometimes as a s perces "
when the symbol in question already has a subscript. When we have a
product of quantities all referring to cne of the two fluids, the
symbol (+) will be appended to the entire product instead of to
each symbol in the product individually. Our notation for the nec-

essary thermodynamic quantities is defined as follows:

P(i) = pressure
T(i) = absolute temperature
= article rest-mass
) TP
p(t) = particle density in fiuid rest-frame
Vl(i) = volume per unit mass (specific volume)
k = Boltzmann's constant = 1.3708 x 10 *® erg/%k
f(i) = number of degrees of freedom per particle

internal thermal energy per unit mass

]
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-&(t) = enthalpy per unit mass (specific enthalpy)

.y = entropy per nnit mass (specific entropy)

ﬂv(i) = constant volume specific heat referred to unit mass

cp(i) = constant pressure specific heat referred to unit mass
= ratio of specific heat = (c /¢

X(:I:) b ( P/ V) :t)

We note that because u(i) andﬁ%%t) are referred to unit mass,
(mu)(t) and OﬂﬁD(i) represent respectively the internal thermal

energy per particle, and the enthalpy per particle.

By definition

(1) T W)t BVl (2-1)

PV, is: the amount of work that could be done by the gas surrounding
a bubble of unit mass of the gas if this bubble were removed (or

its molecules cooled to absolute zero) and the surrounding gas
allowed to move in and occupy the space that had been occupied by
the bubble. (We assume, of course, that the bubble is so small
compared with the surrounding atmosphere of gas that, when the
surrounding gas moves in to occupy the space previously occupied

by the bubble, the pressure P of the gas does not change
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significantly. Because the energy PV,, as well as the energy u,

is theoretically available for conversion into work,'ag rather than
u, is to be regarded as the potential thermal energy associated
with a bubble of unit mass of the gas. (Because the energy PV, is
really provided by the gas surrounding the bubble, rather than the
gas within the bubble, it would be more accurate to say that P is
the potential thermal energy to bé associated with the region of

space occupied by the bubble7)

The above argument indicates why'ﬁais often referred‘to as
"the heat function" and is regarded as the total thermal energy
content of the gas. It is not surprising that, as we shall see
below, mﬁ5 rather than mu, is the thermal thenéial energy of the
particle, analogous to the gravitational potential energy mg,
where g is the gravitational scalar potential.

Further intuitive support for the idea that it is-&, rather
than u, that plays the role of a thermal potential comes from the
fact that, for adiabatic flow of a gas through an insulated pipe in
which the gas performs no work, the governing equation has the follow-
ing form: kinetic energy +. potential energy + enthalpy = constant.
Thus the enthalpy enters the equation in the same way as potential
energy. In the case of large-scale adiabatic convection flow within a

fluid, we may think of the fluid as flowing in pipes whose walls are
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defined by the flow lines.

The above arguments are intended only to provide an intuitive
understanding of the results ensuing from the formalism below,
but no use will be made of them in the formalism.

We now postulate that both charged fluids are perfect gases.

Thus the following relations are valid:

(t

+) K

3l

)(:) | (2-2a)

e

() & * \ k

P Y My M) (2-2v)

- ) L N
X(t) (p?/'cv)(t) = | 'F(t) (2-3)
’M(t> = (/CVT)(:) (2-4)
/&(i) = <’C’PT>(1:) (2-5)
Py = k(€T (2-6)

/A}(t) = [,Qvﬂw - ;‘%}M/ C+ con 5Tav\t] ) (2-7)




Sec. II ol

0 -
We choose Wv(t) and ( (¥) as our thermodynamic variables,
and note that the other quantities can be expressed in terms of

‘these variables as follows:

P(t) = k<%—) ) = [€m£<\— _‘U—):I(t) (2-8)
; = ‘ _ R
Tit) - (ﬁ/pP)(-_‘_—) - [m ) (2-9)

Ue = (L/3 ><:) (2-10)

Ay = [%("1‘.‘;%{» “/ewf’) + consTant}(t) (2-11)

From (2-1) we have

-

3 P = (U + PV + 5 3 P] ) (2-12)

KR

where we have used the fact that, by definition

8y _ .
VT E B, (213)
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Since Au + PAVl is the heat injected into unit mass of the

gas during the change indicated by the increment symbol A\ , We

can interpret ( 4 /YJJ) ( ad"l,\ + P BJ V\ ) as the heat injected into
unit mass of the gas during the virtual dlsplacement (in time or space)
described by Zl/¢ . Thus 'B N + PTD V can be regarded as the

Y -force per unit mass caused by heat injection. ILet Q” be this

force. Thus

(2-14)

. . . - D . .o . . Lo .o 2 R .
we note-thaty using,; (2687 11d {2-1o!, e cans; wod.y [Cwbl o ar

fulloys:

[f’édffl-(?f-l)\%ﬁ() - QKQ{:]&)=O (2-15)

Substituting (2-14) into (2-12), we have

[Gm _l<+) = [(’W\ Q:i;-l— BJP]@__) (2-16)

In order to exploit this relation, we shall introduce a

variable particle mass M(*) , defined as follows:

V‘\”}‘(i): My (1 + g/ + Ry [c*) (2-17)
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\s

where g is the gravitational potential. Thus M) 1s the total
particle mass, taking the mass associated with the gravitational
and thermal energy as well as the rest-mass,into account. Be-
cause, in the situations in which we shall be primarily interested
(e.g., the interior of the sun{,the positive thermal energy is in-
sufficient to overcome the negative gravitational energy, we shall
refer to ';Ct) as the "bound particle mass" and WMy as the
"free particle mass".
From (2-16) and (2-17), we have
led’(Mmey)]

= [(’w\ 5J3 + bjp + G\MQS:{ (2-18)

(%) *)

The significance of this relation becomes apparent when we note

that the three terms on the right are the force-per-unit-volume

terms that appear in Euler's equation. (Equation (2-18) has been
written 1n contravariant form to emphasize that this, rather than the
covariant form, is the generalization of 3-force.)

Euler's equation for the charged fluids has the following form:

:"1‘5.31_](1) = [f’mo e +09 P +CmQ ]’;t) + 1 F (ﬁbuk)@_) (2-19)

e = prover time
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q = magnitude of particle charge (always positive)

ok
F = Maxwell field tensor

In terms of the electric field intensity E-and the magnetic flux

density B, the tensor F9° is defined or follows:

-
= (Eq, Eas Ez) = E (statvolts/cm)

(2-20)
F )E—<B~.)8/\178§)=—§ (GaUSS)

Ik :
F :__F'K.)

where the units have been given to indicate that we shall use

Gaussian units throughout.OAll dynamical quantities will be ex-

pressed in cgs absolute units.)

Referring to (1-2), we note the following:

Ty - _
cﬁ':C“as“uibt*’”’V (2-21)

Using (2-20) and (2-21), we can write (2-19) in the more familiar

three-dimensional form:
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o[ DR ) e &
\‘\((.( M )‘ 7+ AT . V(m «\/\J‘)J)(+> \_ E‘W\Vg VP F(MQ]@)

where

pud : 3 3 -
Q@) =(@,Q , @ )@) == (@, Pz, Q3>(¢) (2-23)

The physical interpretation of (2-22) is immediately evident

[} v o
when we recall that U and mU are respectively particle density

and particle mass in the observer's reference frame. (GVWCLCPO)(t)
obviously represents the rate at which energy is injected per unit
volume by nuclear or other reactions, and/or the heat.énergy
generated by fluid viscosity, and (€ M é?')Ct) represents the
viscous force, and/or the effective force resulting from heat in-
Jection caused by nuclear or other reactions.

The advantage of working with specific enthalpy becomes apparent

when we substitute (2-18) into (2-19):

v J J ()
(G0, = ) s e

We have assumed in writing (2=24) that Q(t) is everywhere non-zero,
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so that it is permissible to divide an equation through by it.

The advantage of (2-24) over (2-19) is two-fold: First, we
have eliminated Q’j €3) from Euler's equation, and transferred it
instead to (2-15) which may be regarded as a "thermal field equa-
tion" on a par with the gravitational and electromagnetic field
equations. Thus, regardless of whether or not we introduce fluid
viscosity or heat injection by nuclear reactions, we can always
regard (2-24), with " (+) defined by (2-17), as the governing
fluid dynamical equation for each charged fluid. In fact, this is
true even if we drop the postulate that the charged fluids are per-
fect gases. Second, e(i) does not appear in (2-24), which has
the form of a single-particle equation. This would appear to allow
us to solve first for 'L('é__‘__) without concerning ourselves about

e (%) and then, knowing 7,\‘;(:) s we would find e(:‘:) from
the continuity equation:

J
B(;(eu )(:) = O (2-25)

whose three-dimensional form is

D(CU%) gy

In actual fact, of course, (’(1) enters into (2-24) implicitly

through - ﬁ’(ﬁ) which, as we see from (2-15), is a function of 6(._\_.) Y
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In an iteration solution, however, we may regard ‘&.(:) as a
specified function of the space-time coordinates. 1In such a case,
use of (2-24) allows a separation of the solution of 6/-3_-) and
-
U (x) whereas (2-19) does not.
Thus far we have not introduced the assumption that our fluid
flow is reversible. If we now introduce this assumption, we have

the following relation:
N TR N
Yo = [T 2] w = L& ¥ ] )

Using this, we can integrate (2-15) to obtain the following ex-

pression for . 'ﬁ, (*.:) :

v : -0 -
‘V T [H (f/eo) e( /’cv] - (reversible flow)

(2) 1) i ‘o
vhere eo and A, are the density and specific entropy
oo,
respectively at a certain fixed point /){/(o) in space-time (and
hence constants). H(ﬂ and H(_) are two constants that mst be

specified as part of the boundary conditions of the problem. Ob-

viously,

Heey = [ﬁ("’&))}(&) - [’Q’ Tl >]

£

(2-27)

(2-28)

(2-29)
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Thus, the constants ,I{QH and }{G_) can be deter@ined from a
knowledge of the fluid temperatures at the point ﬁpéw.

The equation (2-28) may be used as the "thermal field equation”
in preference to (2-15). Equation (2-15) has the advantage, how-
ever, that it is valid even when condition (2-27) is not satisfied.
If, for example, we wished to introduce viscosity into the problem

-

J
by requiring that CP be a suitable function of the derivatives
J

of U ) then in general (2-27) will not be satisfied. In such
a case (2-28) would not be valid, whereas (2-15) would.

We have indicated the way in which viscosity or heat injection
through nuclear reactions would be introduced into the problem by
specifying an appropriate functional form for 6921) . We have
shown that such a procedure would in no way alter our basic dynamical
equation (2-24). Only the "thermal field equation” (2-15) would be
altered. The ultimate purpose of this paper is to find a spinor
alternative to the vector egquation (2-24), and the way we choose
to handle CP?:; makes no difference in the form - of this equa-
tion. Both for the sake of definiteness, and because we noted in
Section I that the adiabatic case was a sensible first step of a

two-step proéessfbr solving the total self-exclted dynamo problem,

we shall now introduce the adiabatic condition:

J
Ry =0 (adiabatic condition)

(2-30)
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In Appendix A several alternatives to (2-30) are discussed,
but for the rest of the body of the paper we shall assume that

(2-30) holds. Thus the "thermal field equation" (2-15) becomes

[(’ Bjﬁ - (K‘l)'ﬁ,a‘,‘f}](i)‘-‘- O (adiabatic case) (2-31)

and its integral is

~1)
ﬁ(i) = [H <e/eo)(Y ' ](i) (adiabatic case) (2-32)

We may use either (2-31) or (2-32) as our adiabatic "thermal field
equation".

Now we note that if the following relations are valid

XC+) = b/(_) (2-33a)
Cr ™ Ceims (2-33p)
(m H>(+) 2 (m H)(—) (2-33c)

then it follows from (2-32) that

(), = R (2-34)
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and from (2-8) and (2-9) that

Py = Py

and
-r(+) ~ )

(2-33%a) is valid because the electron and proton gases are both
monatomic gases. The approximate equality (2-33b) will be maintained
automatically by the electrostatic screening effect. (2-33c) must

be imposed as a boundary condition. From (2-2b)and (2-29) it is
evident that this amounts to requiring that the electron and proton
temperatures be approximately equal at a particular point in space-
time (e.g., the center of the sun at t = 0). (2-35) and (2-36)

then tell us that the two pressures and temperatures are approximately
equal throughout space for all time. The significance of this
statement is that, even through our way of formulating the problem
in terms of two independent specific enthalpiesllflcﬂ and EQJ(_)
would at first glance appear to let the electron and proton pressures
and temperatures differ wildly from each other, in actual fact

(if we impose the boundary condition (2-34)) the two pressures and

the two temperatures are automatically constrained to remain very

(2-35)

(2-36)
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nearly equal to each other. This is a satisfying state of affairs
since we know that because of particle collisions the two tempera-

tures cannot differ greatly.

Tensor Alternative to Euler's Equation

Equation (2-24), which is the form of Euler's equation that
we shall use throughout, 18 a L-vector equation. We shall now de-
rive an alternative equation in which all the terms are antisym-
metric tensors. This is most easily done by starting with the

three-dimensional form given in (2-22b) (except that the bracket

. . = v 4 — = -
on the right is replaced by — mC ] and the termja. e
g D y —fedmc & A7 ,u‘)](:)

on the left is transformed by means of a well-known vector identity):

. Y o1 -» v e = - g
+ Y(mu'e )(:)— ,uzt)x[Vx (mnu A?')d) = q(E + £ MpX B)

It can be shown that (2-22a) results from the dot product of both
—
sides of (2-37) with A .
(x)
Now we note that if we impose the condition
-
B

-y ) °_’)
wn = 3
VX(mW ), = F

0o

(2-37) reduces to

(M A7) (t)

at

> 1 g
+ ¥ (»u’ec )(i)=iﬁ.E

(2-37)

(2-38)

(2-39)
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These two 3-vector equations can be combined into the following

single tensor equation:

— Jk
B@mu —-B(mcu)@)—a—%F
This is the tensor alternative to Euler's equation (2-24). Regard-
ing m and FJk as fixed functions of the space-time coordinates,
(2-40) is a linear equation, whereas Euler's equation is nonlinear.
The linearity of (2-40) is spoiled, however, by the fact that we

must maintain the normalization condition (1-3) for the 4-velocity:

;
(wng), =1

Thus we must still contend with the algebraic nonlinearity of (2-41).

In the case of Euler's equation, the condition (2-41) must also be
satisfied. In addition, we have what we might term a "differential

nonlinearity" in Buler's equations itself because of the presence of

mc A
the term [}( Ey )J(+).
we have rid ourselwes of the differential nonlinearity, but are
still left with the algebraic nonlinearity (2-41).

It is evident that the tensor equation (2-40) is not exactly

equivalent to Euler's equation, because it corresponds only to the

subset of solutions of (2-37) that satisfy the condition (2-38).

Thus, by replacing (2-24) with (2-40),

(2-40)

(2-41)
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Either we regard (2-37) as more fundamental than (2-40), with the
result that by working with (2-40) we are excluding physically
meaningful, and perhaps important, solutions from consideration;
or, we take the point of view that (2-38) is a physically necessary
condition, and the solutions of (2-37) that do not satisfy (2-38)
have no physical validity. In order to help convince ourselves
that the latter situation is actually the case, we shall first
investigate the physical meaning of condition (2-38).
o

To this end, we let ‘5’: [‘g’]ﬂa—)zo be the magnetic

field in the local fluid rest-=frame,

Then from (2-38) we have

[(‘?X/‘—;) :o] = - 173—— é (2-k2)

x) M C

The left-hand side is the fluid vorticity. The presence of vorti-

city means that at the microscopic level the fluid can be regarded
-

ﬁ
as rotating like a rigid body with the angular velocity ’O‘C*) where
> -
-
Ny = = (VXA) (2-13)
(%) X N=0 (i')

Thus we have

s, 9 =
ﬂ(t) - +9-V¥\T)C. B (2-4k4)
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which is just the Larmor Condition. The physical interpretation

of this condition is that there can be no local vorticity}or rota-
tion, in the charged fluid without a magnetic field to provide, via
the Lorentz force, the necessary Coriolis force.

From (2-38) we note that large-scale vorticity (quvﬁ 0 ) is
possible even in the absence of a magnetic field, because then the
gravitational force and/or the pressure gradient can provide the
necessary Coriolis and centripetal forces.

Thus we see that for a charged fluid, (2-38) is a physically
necessary condition. It must be emphasized that the Larmor Condi-
tion is necessary for a fluid, but not for a single particle. In
the case of a single particle moving in a circular orbit, for
example, the condition relating angular velocity and magnetic field
is that the Lorentz force must provide the necessary centripetal
force. This condition;which defines the so-called cyclotron fre-
quency, is identical to (2-44) except that the factor 2 is absent
in the denominator on the right. The Euler equation guarantees
that this condition is fulfilled, since it is Jjust the generalization
of the condition on the Lorentz force for arbitrary particle orbits.

In the case of a fluid, we must allow for the fact that, in
addition to the rotational velocity which requires a centripetal
force, there is a random thermal velocity which,together with the

2

rotation of the fluid, gives rise:.to a Coriolis acceleration which
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must also be taken into account. For given angular velocity, the
required centripetal force is proportional to the size of the
fluid vortex beiﬁg considered, and so vanisheés in the limit of zero
vortex radius, which is the limit involved in the evaluation of

-V>X /\7' in (2-43). The Coriolis force, however, remains finite
in this limit since the thermal velocity on which it depends is
independent of vortex size. This is the reason why, for a fluid,
the Lorentz force must be equated to the Coriolis force alone.

We noted that, in the case of a single particle, the Euler
equation itself guaranteed that the Lorentz force would have the
proper value in relation to the characteristics of the particle
orbit. In the case of a fluid, however, an extra side condition,
namely (2-38), is needed to guarantee that the magnetic field
strength will have the proper relation to the vorticity. The
reason for the need for an extra side condition is that this
condition arises from the presence of thermal velocity, which is
not represented in the Euler equation. (Only the energy of thermal
motion is represented via the.enthalpy, but the detailed momentum
and force considerations associated with thermal motion = namely the
need for a Coriolis force - cannot be represented in Euler's equation.)

Thus, we conclude that the solutions of (2-37) which do not
satisfy the condition (2—38),and hence are lost when we use (2-40)

instead of (2-57), are those corresponding to an absolutely cold
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fluid with no thermal motion. 1In such a case there is no need to
impose the Larmor Condition, and the problem of calculating fluid
flow is no different from that of calculating particle orbits. If,
however, thermal motions are present in the fluid (i.e., ﬁi_;t 0o},
the Larmor Condition must be imposed. Except for this extra side
condition, the fluid problem is still the same as the problem of
calculating particle orbits (except that we must introduce the
thermal potential‘e), since solutions of the tensor equation (2-40)
are always solutions of (2-24), which has the form of a single
particle equation.

We have used above a physical argument to convince ourselves
that the tensor equation is more fundamental (for real fluids)
than Euler's equation. In the next section we shall use a more
formal argument to arrive at the same conclusion, in that we shall
show that the Hamilton-Jacobian formulation of the magnetogas-
dynamical problem leads to the tensor equation, rather than to
Euler's equation. To simplify the discussion, as well as to lend
it greater physical significance, we shall present the Hamilton-
Jacobian formulation as the incorporation of the de Broglie Hypoth-

‘esis, regarded as an experimental fact, into the formalism.
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IIT HAMILTON -~ JACORI FORMULATION

We take as our starting point the following well-known ex-

.

J
pression for the canonical particle momentum P in the presence of

J
an electromagnetic field represented by the 4-vector potential A

d o ] :
P(t) = (mcn )(t) d Ci-c A‘) (3-1)

T

he feature of the Hamiltou-Jacobi formalism that is wvital::
to our present considerations is the fact that Pd can be repre-
sented as the gradient of a scalar function @, which is Hamilton's
Characteristic Function., Thus

J

3
Pay = ~ o @(«:) (3-2)

or, in three-dimensional form

. 1 9%

Py =~ T Y (3-3a)

-> 1 kN 3 -

Py = (Py by b ) = V@(@ (3-3b)
brom the point of view of the Hamilton-Jacobi formalism, (3-2)

is part of a contact transformation that carries the Hamilteonian

function over into a form that allows an easy solution, It is

physically more significant, however, if we take the point of view

that (3-2) is just the expression of the de Broglie Hypothesis,
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which we regard as an experimental fact that must be incorporated
into our theory. In its usual form, the de Broglie Hypothesis
states that for every particle there exists a scalar function
whose gradient is the particle momentum, In order to adapt this
statement to a fluid, it is necessary to impose the requirement
that @ be a continuous function of the space-time coordinates.
Thus, in the same way that the fluid picture of a gas (as opposed
to the kinetic theory picture) requires that the fluid velocity
must not vary in a rapid and random way, but rather must be a
smoothly varying function, we require that the phase function

of the fluid must also be a smoothly varying function. This con-
tinuity postulate is implicit in (3-2).

Substituting (3-2) into (3-1), we have

\; ¢
=¥, = (Feu), t A (3-4)

)

Taking the curl of (3-4), we have

v\
O (mceu )(t)

kK, o j q- K9 ——-q‘ J'k
- mc LAY = x -
3 (meuw)y, =F &( N A)=FIF" (3
A
where wa have used the fact that the curl of‘A is the Maxwell
. ik . .
field tensor F . This equation is just the tensor alternative

(2-40) to Fuler's equation that was introduced in Section II., As

was noted there, this equation (like Fuler's) must be supplemented
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by the continuity and normalization conditions:

aj(euj)

=0 -
ct) (3-6)
@’ U; )(:t) =1 (3-7)
If we solve (3-4) for 1{iﬁ and substitute into (3-7)) we
obtain
) i o £
(65@@) x %As)(a Oy £ %AJ) = (M C) (3-8)

which is just the well-known Hamilton-Jacobi equation.

If we regard AJ amivﬁ(t)as given space-time functions, then
in principle we can solve (3-¢) for (D(t) and use this in (3-4)
to find 14i9, which would then automatically satisfy (3-7). (It
would still be necessary Lo impose (3-6).)

Mlternatively, we could ignore (3-8), and regard (3-5) - (3-7)
as our basic system of equations.

To ‘réturn to the question of weighing the tensor equation
(3-5) against Euler's equation (2-24), we note that if we contract

(3-5) with U;, and use the relations

) d
uj 0 = Lc.'d“q. (3-9)

and

ko J J
u; O U =—;L~Bk(‘b(5?/\) = 0 (3-10)
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the result is

d(mecy® Nk U o ki @
g(_;%g_t) o d (me )(t) 2 qF Ty (3-11)

which is just Euler's equation,

Thus we have seen that it is the tensor equation) rather than
Euler's equation) that results from the Hamilton-Jacobi formulation
of the problem) and that Euler's equation (which is nonlinear)
results from the tensor equation (which is linear) by contracting
the latter with U;., It is this contraction process that introduces
the greoo eudontidy, dn Uy, and ‘hence the nonlinearity, into
Euler's equation. Thus the nonlinearity of Euler's equation can
be regarded as physically spurious) resulting from the unneces-

sary contraction of the tensor equation with.uﬁ.




IV FIELD EQUATIONS

It was noted in Section I that the purpose of this paper is to
transform the dynamical half of the magnetogas-dynamical problem,
replacing Euler's equation by a spinor equation. The source
equations for the electromagnetic and gravitational fields will
be just Maxwell's equation and the four-dimensional Poisson equa-
tion respectively. In order to define the notation and to provide
a convenient reference, the relevant field equations will be briefly

discussed in this section.

Electromagnetic Field

The definition for the elements of the Maxwell field tensor F:Jk

q
in terms of the electric field intensity E and the magnetic flux

density’g'has been given in (2-20)., The four-dimensional form of

Maxwell's equations (in = wnpationalized Gaussian units) is

B‘de

J

I

+1 g L(en),, = (€n )] (4-1)

—1a
where q,= 4.802 x 10 statcoulomb is the magnitude (always
|
positive) of the electron and proton charge, and (?24<)¢H and
(euk)oﬁ are the flux densities of the proton and electron gases

respectively. The three-dimensional form of (4-1) is

Vo= wmqleend) ., = (ex),] (4-22)
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I. 2 Sald oyr 7) ‘1 Y
VXB = = q-[(fu )(.._) (?74/‘" (=) T -—a-" (4—“2b)
The field tensor FJkiS'related'to the 4-vector potential in
the usual way:
J k44
K= AR TAT (4-3)
The vector equivalent of (4-1) is
nA" - 3% a") = #Tqleenn), - (En¥)n ] (4-4)
J C)) )
the
where O is,d'Alembertian operator defined in (1-6). The choice
of gauge in (4-4) has been left arbitrary.
'\'k N
Let F'“be the dual to F'*. It is defined as follows:
AJ bk L k4 h
.-J_ Jkdn — J _
ikdn
where & is the antisymmetric unit tensor defined at the end of
Section I. Using (2-20) we have
Do 230 _ d
(F ) F ) "‘( ) = B
ANz “3| \L pur
(F*3, F* F"™) = (Ex E,)= E (4-6)
A Jk A vl
i = — M

From (4-5) we have

Ak Jkdn

v
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Using (4-6), we have for the three-dimensional form of (4-7)

—V»' B=o0 (4-8a)
S = \ Big
V-E+ZT 35§ =0 (4-8b)

which, together with (4-2), constitute Maxwell's equations in three-—
dimensional form. We note that the equations (4-8) follow directly
from the introduction of the 4-vector potential; thét is, these
equations are the justification for introducing the 4-vector
potential,

We remark, incidentally, that using (4-5), it is easy to
show that (4-7) can be written in the following alternative

form:
- . 1 '
SFM LI FY L 37F = o (4-9)

We note that, because of the antisymmetry of FJS the left side of
this equation vanishes identically when any two indices have the
same value,

Let E?k'be the electromagnetic stress-energy tensor. As is

well-known, it has the following form:

. . ‘k
Ei% - ?lf[FMka +,¢?J (anF“):l (4-10)
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JK K
where ¢ is the metric tensor specified in (1-1). Thus 4T E’ may
be regarded as the square (in the sense of matrix multiplication)

. JK v . i Jk/_An
of the field temsor F°", plus the diagonal tensor -,_—’;2' (F’ an)

where, using (2-20), we find

R ) = (B-EY) (4-11)

Using (4-10) and (2-20), we find the following well-known

expressions for the elements of E'Jk :

22
E°° - (E""_‘_ B ) = electromagnetic energy density (4-12a)

C.(EM Eoz) Eo?) = C(Elo) E:.o) Ezo)_:
(4-12v)

C -y = _ reg .
= I <E X B) = u = electromagnetic energy flux
density (Poynting's vector)

J'K - o0 -l.k . .
E =- [E 7 +'AF|?F<EJEK+ BJBkﬂ = electromagnetic (4-12¢)

stress tensor
<J> k=152,3)
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whare
! S 3y — - o
(t/, E 3 E ) - <l'~--,\/.)t,x}9 L:g_>
(4-124)
\ ks 3 - - >
®,8%,8%) = (Bx, By, Bs)
Using the fact that
i
% io= 4% (4-13)
it is evident from (4-10) that
', = 0 (4-14)

4

Using (4-1), (4-9), and (4-10), we find the following well-known

relation:
K )
% E* = - 1F ! [ ul)m"(eul)c-)J (4-15)

The time-like part of this, which is the statement of the conserva-
tion of energy, can be written as follows:

] A=y T Teont Lo

=— -+ V- ?/(M-_-_: —-.qE,E(euo/u—)(ﬂ_(eMU/\r)(_)] (4-16)

3t -
per unit time.

The expression on the right side represents the energy transferred A

per unit volume from the charged fluids 1o the electromagnetic

field.
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Gravitational Field

We postulate the following source ..equation for the scalar

gravitational potential 7:

Qg =—4mr [(em)m-&- (em)(_,] (4-17)

-t
where [ = 6,668 x 10 dyne cmz/gm1 is the gravitational constant.
For the time-indépendent case in which the mass on the right
is distributed with spherical symmetry, we find for C-E?ZL which

is the gravitational force per unit mass, the following:

NPwm, >
r’f n (4-18)

where -I'T is the unit radial vector, and mg is the total mass con-
tained within the sphere of radius ¢, This, of course, is just the
familiar Newtonian gravitational force. Thus (4-17) corresponds
to a suitably covariant extension of Newtonian gravitation.

Because we are employing scalar theory, however, rather than
a tensor theory as in General Relativity (in which the symmetric
metric tensor effectively plays the role of a gravitational
potential), we must expect to find that the velocity dependence
of the gravitational force on a moving mass is not correct to
higher orders of Mz . Moreover, since only the rest-mass appears

on the right side of (4-17), our scalar theory neglects the
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gravitational effect of the mass arising from the thermal, electro-
magnetic, and gravitational energy of the electron and proton
gases., However, these errors are negligible in most magnetogas-
dynamical problems of physical interest.

Let G’Sk be the stress-energy tensor of the scalar gravitational

field. It has the following form:

G"= = [(6’7)(3 - % 7‘“‘(5_‘?)(3; 7)] (4-19)

e
That this is indeed the correct expression for G"" can be verified

Ik
by calculating 3'G

056 = 5[0 0'9) ¥ + (3 ¥ ) ~Qug)(355%) ]
= ¥ L(U 7)9" ]" —lEem)a + (e “‘)c—)‘_‘ B

The right side of (4-20) is just the negative of the gravitational

(4=-20)

force density acting on the two fluld fields., This is completely
analogous with (4-15) in which the right side is the negative of

the electromagnetic force density acting on the two charged fluid
fields.

From (4-19) we find the following expressions for the elements

JK
of G

Uz i )+ )]

= gravitational energy density

(4-21a)
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C(G—Q\, G_o'L7 G_os) - C(G—‘o G_zo G_3°)

2 »T = *Trﬂ( )(6’?)

(4-21p)
= 2(?,‘/ = gravitational energy flux density

~ﬂrr‘g [V%’l}‘ c(ﬁ%).]?’ ‘*‘(5J (5\‘)} Lo

) (4-21c)
(). k= ), 2, 3) = gravitational stress tensor
)
From (4-13) and (4-19) we find
3 £ da\-
G 5= —ar (3N 2g) = mrl(T9)" — L( 5—%) { (4-22)

Finally, we note that the time-like component of (4-20)

which is the statement of conservation of energy, can be written

as follows:
a GOO
ot Z(r =7 [(ew‘)w +<€W‘)c—>] %2'/

(4-23)

where the right-hand side is just the energy transferred per unit

time per unit volume from the two fluids to the gravitational field
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V. SPIN EFFECTS

As was noted in Section I, we must take particle spin into
account, not because 1t is physically significant in magnetogas-
dynamical problems, but rather because it is the price we must

pay for the benefits of using the spinor formulation of the problem.

Magnetic Moment

Spin mekes itself felt in two ways: through its magnetic
moment, and through its angular momentum. We shall consider
first the effects of the magnetic moment.

Let the direction of the magnetic moment of a particle in its
rest-frame be specified by the 3—vector/%<¢), which can be generalized
to the 4—vector/u«2ﬂ by specifying that the time-like component
be zero in the particle rest-frame. We specify the magnitude of
the magnetic moment of a particle by the scalar//»tg, (We allow
the possibility tha?y?ﬂis not a constant, but rather a function of
the fluid and field variables, In Section VIII we shall see that
the functional form of/wqu is automatically specified by the
spinor equations,)

The magnetic moment of a particle may also be described in

Jk Tk
terms of the antisymmetric tensar<;~uA/ ) where/»(+)is derived

&)
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J J
from/ryi)and the particle 4-velocity L4<:)as follows:

jk Jkdn

My = & g/?u”kﬂ (5-1)

Thus
o™ 07 /-\Jn)_](t) = few ] o, (5-22)
(o' 27 AJ3°)_Z(+)= {(“\")[{- A—FM/N/%)EO) (5-2b)
where in (5-2b) we have made use of the fact that}?xj:=}?&}% > which
follows directly from the form of the Lorentz transformation.

Since 61(’18 just the particle density in the observer's frame,
(5-2a) tells us that the space-space part of ﬁvafkis Just the
magnetigation of the fluid. We note that the cross-product in-
side the brackets on the right side of (5-2b) is just the well-
known electric dipole associated with a moving magnetic dipole.

Thus, even though e€lectrons and protons have no electric dipole
moment at rest, a spin-dependent electric polarization of the fluid
is possible when there is motion.

Now we know that in a magnetized body there is an effective
current density given by the curl of the magnetization. By
analogy, we would expect a 4-momentum density to be assoclated with

J
the angular momentum density arising from particle spin. If <§P(+)
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is this extra 4-momentum density divided by €, i.e. the extra

momentum per particle, then (3-4) must be replaced by
i v i J
- by = (mew),, t a4+ by (5-3)

The form of this equation indicates that .it should be pos-
sible to absorb §b\(,t) into the 4-potential, i.e., to express the
spin effects as a small correction to the electromagnetic field.

In order to be thorough about this, we must keep in mind that every
particle has a contribution to its rest-mass AMyarising from
the interaction of the magnetic field and the magnetic dipole

°
moment., If gand (/m/%)ci.)are respectively the magnetic field and
the magnetic dipole moment in the particle rest-frame, then the

magnetic contribution to the particle rest-mass is

0 S ok
Ame, = "'é—m(/"/_z)(:)' B = 1c'-(/wN )(1-) FJK (5-4)

where, in the second step, we have made use of (2-20) and (5-2).

If we wish to express the spins effects in terms of a small

J
correction att)tC)the 4-vector potential A , then we must introduce
ik

ik
sy PO the field tensor F ~ where, in

a corresponding correction §

analogy to (4-3), we have

[} v

Ik J % L
oy = 0 2y — 0 ay (5-5)
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- —
Analogous to (2-20), we can define corrections € 4 and bexy to

the electric and magnetic field intensities E and gas follows:

=
= €y

o 20 30
(f 71C ) t >(t)E <e'+; €a) ei‘)

23 A3 1 — —
(¢ ,5: |>f )(i)'-:_(bw, bq,bz)(t) ""_b;ci) (5-6)

(%)

§Ak _?\«i
(x) ~ (%)
Jk I
If Tc(i-) is to be regarded as completely analogous to F,
then it should produce a contribution S""(r) to the particle rest-

mass having the form of (5-4) with F.ik replaced by %K

8 > _ ik
S == R F] = e (2 )y 6

NS
Let W (1) be the total magnetic contribution to the particle rest-

mass., Then

S 2 S
Mea = Ayt fmey = - 'é‘x{(/”/")\'(&%ﬂ(b :
- E—C——)‘ (/)JA)JK)(:)< F +§(t))
If we regard ‘MJ(:), (/xzvdk)(t), and S":t) as known functions,

d
then it is evident from (5-3) that & i) is determined by the condition

i o 3 .3
Shey = (MeW)yy T T (5-9)
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where from (5-5) and (5-8) we see that Q{Cb is a function of the
derivatives of«l?tr Thus (5-9) is a first-order differential
equation for 321)- In actual fact, it will not be necessary to
solve such an equation since, as we shall see in Section VIII, the
spinor equations give us an expression forriii) that automatically
satisfies (5-9).

If we let bd(t)be the total particle rest-mass, we have from

(2-17) and (5—8)

J

= My (H— Fle™ + fact)/c"> 1::‘-(/“' k)@) [FJR"' 'F("—’)

Substituting (5-9) and (5-10) into (5-3), we obtain

(5-10)

- 30@ = (Mcw)(r) + %.,[AJ-‘-&‘&)]‘ (5-11)
This way of formulating the dynamical effects of spin gives

us an immediate intuitive feeling for these effects, Moreover
it provides a neat way of determining when these effects can be
neglected: If we can show that l&ii)\<ﬁ ‘AJI, then we know that
the dynamical effects of spin are negligible, We shall see in
Section VIII that it is very easy to estimate the magnitude of the

‘
éltt>that results from the spinor equations, and that, in all

magnetogas-dynamlcal problems on a laboratory or astronomical scale

éL(+)1s completely negligible compared with the magnitudes of A
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encountered in such problems. If, however, we were to attempt to
apply our spinor formulation of magnetogas dynamics on an atomic
or nuclear scale, then it turns out that the spin effects represented
by the effective potential:&it> would be far from negligible,.

We note that in generaJ.Jii,?ﬁ aé-) . This is not surprising
since the correction potentials 3{4) and 3&,) have their origins
in dynamical effects of the spin fields (@ /wj ) () and ( (’/wj)(_) which
are in general different. From a purely formal point of view, the
equations that follow treatévga, for example, as an electro-
magnetic field which produces a self-interaction within the proton
gas, but which produces no interaction between the electron and
proton gases, Similarly for air). In this respect, the effects
of<&i§$ are analogous to the behavior of the exchange forces in
gquantum mechanics which act only between identical particles,
and not between unlike particles,

To complete the derivation of the dynamical equations including

the effects of spin, we take the curl of (5-11), and arrive at the

following:

. K ’ _ ’ .
dMen )y = dMew )y = F F{F ™ +5) ] (5412)

This is just the generalization of the tensor equation (2-40).

x
Contracting (5-12) with t(j), we arrive at the following generalization
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of the Fuler equation in the form (2-24):

d(Men’) < 1)
{"—d_’r’__](:) 3 (e oy = % [FY e ] - (5-13)

Fluid Stress-Fnergy Tensor

As a preliminary to introducing the stress-energy tensor for
each of the two fluid fields, we multiply (5-13) by f(t) and write

it in the following form:
(W\cu) (mc.u) 3om an — IR J
[6 (+) If’ - 65 (me ) + ?f"F Mlé)(t):: ﬁ/(r) (5-14)

J
where yﬁ(:) is the force density acting on the proton or electron gas:

3
ga(t)-_-.«’ )(i) 3" +3 + 9 F ((’Z(x)(i)—- (’(t)B(Mgl)(t) q_F (eu,) t)(5_15)

3k
We define the fluid siress-energy tensor T(i) for either the

proton or electron gas as follows:

Jk
where the tensor t(t) contains all the spin dependences., We impose

Jk
the following condition on tyy :

B t(t) = [65*(_”‘__“_) — eBJ(,v "-) + Q‘G'FJIM'J(:) (5-17)
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(In Section VIII we shall see that the spinors equations specify the
dk

functional dependence of t(t) in such a way that condition (5-17)

is automatically satisfied.)

We augment (5-17) with the continuity condition:

d; (e w')

(+) (5-18)

These two conditions, together with the definitions (5-16),
suffice to guarantee the validity of the following relation:

' p
B}[I"Qé =% (5-19)

)

This equation, which is identical with (5-13) when (5-17) and
(5-18) are taken into account, is the justification for regarding
the tensor defined in (5-16) as the fluid stress-energy tensor,

We now make the following identifications:

o0
fluid energy density = T(:) (5-20a)
Q
fluid energy flux density = u(:t) =cC (“\""'7 T 02-) T'°3)(+) (5-20b)

= s 30
fluid momentum density E/&(t) ;<ﬁ; ﬁ:‘(&v@:); _é,' (T':T'-;’TJ )(*§5-20c)

In terms of these quantities, (5-19) can be written as follows:

<)
aTcﬂ V Z{(+) = C‘f‘(t) (5—21a)
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v 5! J'
Bt(i) == T(:) T ﬁ‘cx) “)X =1 ,3) (5-21p)

These equations are the justification for the identifications

made in (5-20).

Fluid Angular Momentum Tensor

If the spin angular momentum density of either the proton or
Jxg
electron gas is designated by,gJ(I), and the total angular momentum

density of either charged gas by M(+), then
Ing _ J - kd Jﬂ?
M(+\ = X(t) + _‘c— [4 T(;t) Ve T i (5-22)

The intuitive significance of this definition is more apparent if

it is written in the following form:

1\7\@) :X(t) +r x/Qb (5-23)
where
M(t) = (Mlﬁ-) M,\‘)Mz ) = (,V\13°) M3l°) N\Iz°>(i) (5-24)
I'id t3° 3]0 18
= (’{')‘1’ i) :."'.(N‘l) *L) /f's) (5-26)

g —p ->
and,&(t) is defined in (5-20c). The 3-vectors,£(t) and M@) are

the quantities to be regarded respectively as the spin and total
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Ink JkA
(%) and M(t)

are necessary for a covariant formulation of the theory.

angular momentum densities, but the complete tensors /(ﬁ

The conservation of angular momentum requires that the follow-

ing condition be satisfied:
\51 My =< ;[AL ﬁ(r) - A ﬁ,(i,)]; (5-27)

The integral form of this equation makes its significance more
apparent, To derive this we first write the space-space part of
(5-27) as follows:

Y Moy

£ >
bt —+ Cbﬁﬁct) = rX ‘ﬁ/(r) (ﬁ = l) L) 3) (5—288.)

where

=9 Y, ¢ 2 234 34 1aR p .
Mgy = (Mo, Mg, Mg )2 (M, M5, M) 0 (L2152, 3) (5-280)

e

ﬁ"(ﬂ = Og”*» ﬁ'ﬂ){’e)u‘) = (ﬁ/‘, ﬁ»t ﬁ'z (x) (5-28¢c)

We integrate (5-28a) over the 3-volume \/3 contained within a
large sphere of radius R . Since the term involving ﬁc,:) is a
3-divergence, it can be transformed by means of Gauss' theorem
into an integral over the surface of the sphere. If the two
charged fluids are contained completely within the sphere, or if

q
their distribution is such that as R-’aﬂ, the magnitude of M‘eon

-2
the surface of the sphere falls off faster than R = then the
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—p
integral over all 3-space of the terms in (5-28a) involving Nﬂ£

will vanish and we are led to the desired result:

A > 7
e JMm d = f(r xRes)d Y (5-29)
Y3 Y

where the integration extends over all 3-space. This equation
states that the time rate of change of the total angular momentum
of one of the charged gases equals the total torque acting on

the gas.

Substituting (5-22) into (5-27) and using (5-19), we arrive
k2

at the following condition an)i(+y

ik : ' : .
BX /2(1-) = %(TJK—T“)“:) = "a‘(th—th)<=) (5-30)

This shows that when a fluid has spin, its stress-energy tensor

cannot, in general, be completely symmetric. We shall see in

Section VIII that the spinor equations specify the functional
194 m

forms Ofla(t) and't(t) in such a way that the condition (5-30)

is automatically satisfied.

Total Stress-Energy Tensor

From (5-15) and (5-19) we have
QlTey +TET = 3Ry + Py + [y +€@ )] 'y

JA

J s .
=9 [F&)"‘P(—)] - }/Q ¢t E} EJZ



63 Sec, V

where we have made use of (4-15) and (4-20). Thus
iR
B/QT = O (5-32)

where

il ¥ j ' § :
T= TcJ+) t T(J__() — [Pt P 2“ + G g
(5-33)

P4 ¥4 w o4 g K it IR 2 iR
= (ev:c’“uJ I P?yd )U)-;-(G\‘(ync-’w\ nt- f’f )(_) +tt e + G+ E

i4
Obviously,‘I* is the total stress-energy tensor of the entire

magnetogas~dynamical system including charged fluids and fields,
We note, incidentally, that using (2-1), (2-13), and (2-17)

we have
( Voaou 4 34 _ B4 P 9Ly
pmduu - Py )(:) -[(£+P)u CRE I 2 PPN (5-34)
where
ECt) = [e(w\c"-f as +m’b()] ) (5-35)

is the energy density of the fluid in its rest-frame, The right
side of (5-34) is the usual relativistic form for the stress-

energy tensor of a perfect fluid (viscosity neglected) .*

xSee, for example, Mdller (ref. 10) p. 182, eq. 104
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We now make the following identifications:
(-]
total energy density = T ° (5-36a)

—p
total energy flux density = 'Z{ = C(T 01 T‘.“; T 03)
/

: 'Z{»G-)-{..Z-?(-)-*_ﬁ&w»*— ﬁax\/

total momentum density ':—:Z: (A') é’; ng

=<(T", T, T%) (5-36c)
=> = =

(5-36b)

In terms of these quantities (5-32) cen be written as follows:

L-X-) —
%\-]5‘ +'V U= (5-37a)

J ,
%;f’ )/T’ z (J;,(=I)2.)3) (5-37b)

These equations, of course, are the justification for the identi-
fications made in (5-36)
We can integrate the equations (5-37) in just the same way

we integrated (5-28a). Doing this, we find

€ fT‘ — constant (5-38)

IZCL V3 = constant (5-39)

V3
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whereé is the total energy of the entire magnetogas-dynamical
—p

systenmn, and‘(f) is the total momentum,

Total Angular Momentum Tensor

wk
Ir M is the total angular momentum density tensor for

the entire magnetogas—dynamical system, we have
i IKR iR
_L " -
' =4, tdo T+ TSl (5-40)

The condition for conservation of angular momentum is

O = 0 M= YLy + LT v £ (T T

=[udri e LMo

" .
where we have used the fact that t\)(*) and t'('f) are the only parts

(5-41)

Jk
of T that contain any antisymmetry. Obviously, if the condition
(5-30) is satisfied, conservation of total angular momentum
follows automatically from the definition (5-40).

Integrating (5-41) over all 3-space in the same way we integrated

(5-27), we have cthei > following result:

\)k jko
f d V3 = constant (5-42)
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JKk
where ?77 is the total angular momentum of the entire system. If
.—)

we define the 3-vector momentum W as

W= (W, Py, M) = (0, 0 1) (5-43)

then from (5-42), (5-41), (5-36c) and (5-25) we have

W fMdV [£C+)+/ié)+ Px,gJ_]dV =  comstant (5-44)

It is posmble to express the total angular momentum in

j ]
terms of a 4-vector z instead of the antisymmetric tensor W‘“‘
J
once we have defined the 4—Velocityw of the entire system,

-
Vv
Ir V is the 3-velocity corresponding tow , then by definition

V= [l-vyc’*]_h (5-45a)
, ' i
:Q/J'.'_:_ ZOVJ (s=1,2,3) (5-45D)

<

2y, =1 (5-250)
WJ is defined in terms ofé‘ and f‘= (flfl/f-'3) as follows:
'V 5 [EI,L— e _;;1_] s (5-46a)

%J_ c ! [é . ]‘Vl,_« (5-46b)

(J=12,3)
From (5-45) and (5-46), it follows that
—p

7'-: (5‘4;&) (5-47)
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where the quantity in the denominator on the right is just the total
mass of the system in the observer's reference frame, The square
root in the denominator of (5-46) corresponds to the rest-energy
of the entire system,

Using the 4-ve1'ocity defined in (5-46), we define the 4-vector

J
angular momentum z as follows:
J JkZn
— | \
Z=— &0, (5-48)

In the rest-frame of the total system (\7: D) , we have

=]

o 8 er V=0 (5-49)

(i‘) Zo"z) is) = %
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VI SUMMARY OF FOREGOING RESULTS

We have seen that the dynamical side of the magnetogas-—
dynamical problem can be specified by the following system of

equations:

d(MCMJ\) \S %y - ..ik 'ik (t)
L‘T} L= oMy £ IFT fo T

3, (6u')y, =0

(), =

1

where

v ~s
M@ = Mg+ My

3
a
]

+) = ca) [\ * %’/C-"'\" ﬁct)/c"]
X ak
M) = E‘_c_,:‘- (/'JA)J'u)(;t) [FJK'\-?(*J
We impose the adiabatic cordition
P - (r-pkase] =
|6 ¥R - -0k iCly=©

or

Rwy = [#8) "]

&)

(6-12)

(6-1Db)

(6-1c)

(6-14d)

(6-1e)

(6-1F)

(6-2b)
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where

o

Co= )y 5 He= [R)] (6-2c)

&)

) . . e .
where p, are the coordinates of a particular point in space-time.

If the condition (6-2) is satisfied, then

EC bo(Mc“):](i) — (em)(t)aj? -\‘-B‘)Pct) + L@blw’?\c ](+) (6-3)

It is this relation which allows us to replace the force densities
in Euler's equation that are associated with gravitation, pressure,
and spin-field interaction by the particle density times the
gradient of the total particle rest-energy M(:)C.

The specific enthalpy e’(:‘.:) is the only thermodynamic func-
tion we need know, since the other two thermodynamic functions
of principal interest, T@,_) and P@) , can be found from the follow-

ing relations:

T(*—‘) = <€‘//C'P><t) (6-4)

and

P(*) - [(?Mﬁ)( —‘X_](t> (6-5)

We have seen that there exists a simplified alternative to

the system (6-1):

;o
_B ey = (Mcu)m ad %_[Aﬁ-a@)] (6-6a)
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(M_,' MJ)(:) =0 (6-6¢)

Taking the curl of (6-9a) yields the tensor aliernative to

Euler's equation:

n

dme ot )y —V(me uj)<i

(t
Contracting (6-7) with UJ yields Buler's eguation in the form

%KF + (*)J (-7

(6-1a). Thus any solution of (6-7) or (é6-ta) iz 2lso a solution of
(6-1a), but the converse is not in general true, Thus (6-6a) and
(6-7) correspond to a more restricted cless of solutions than
(6-1a). The source of this restriction can be stated in either of
two ways: (1) The restriction is Just the recuirement that there

N

can be no local vorticity in either charged gas without a magnetic

field to provide the necessary Coriolis force arising from the

"

random thermal motion; or (2) The restriciion results from the
requirement (3-2) that the generalized particle momentum must te
the gradient of a scalar, wnhich is just the incorpcration of the
de Broglie Hypothesis into the formalism,

Obviously a choice must be made between the systems {6H-1)

and (6-6), and we have chosen in favor of (6-6) which s the

more fundamental formulation of megnetogas dynamics, becsuse the
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added restriction it imposes is physically necessary for a charged
fluid with random thermal motion.

Thus the fluld dynamical half of the problem is specified by
the system (6-6). The field half of the problem is specified by

the following group of equations:

€2, £ - (r-DRY; 6] (6-8a)

(i)

or

-1
(+) D‘Ke/f’o o ](i:)

(6-8b)
0 AJ — BJ < akAk) = 41T q_{(euj)ﬁ)_ (eui)(—)] (6-80)
Og ==4T T (em)y,+(Em), ] (6-8a)

Equations (6-8a) and (6-8b) are just the equations (6-2), and have
been repeated here to emphasize that we are treating ‘e\'(:) as a
"thermal field" on a par with the gravitational and electromagnetic
fields represented by Y and AJ We have a choice between (é~8a) and
(6~8b), and can use the one that is simpler for calculational

purposes., We noted in (2-33) - (2-36) that if the constants H<+)

and H(_> satisfy the condition

<M H >C+J = CM H>(-) (6-9)
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then the electron and proton temperatures are everywhere approxi-

mately equal.

3k
The stress-energy tensor Wﬁ of the entire system, including

both charged fluids and the fields, has the following form:
TJk_ 5\\ T';k JK Jk 3k
= T + w‘ﬂ&ﬁﬂﬁ? +E+G
where
Jk - v o J‘ K ik
T = (Emceuu )@_.)“‘ T
ik ¥4 i
- . J 3 o ke dn
e AR TG Fan)|

6" = g l)(3) - £ £ %) (%g)]

These tensors satisfy the following divergence relations:

BKT“ = O
0 TE 2 g
kK 'ex) ™ (%)
where

J

L= (€l ¥+ Py 3 FMew,)
= [\e%‘k%c_%)](t) x q‘ F”\(euky(t)

3™ = — 9 F¥ Ceng),, — €1 ]

k

(6-10)

(6-11)

(6-12)

(6-13)

(6-14)

(6-15)

(6-16)

(6-17)



73 Sec. VI

36 = - [cem)y + (emy,,] BJCJ’ (6-28)

Equation (6-14) justifies the following identifications:
total energy density = ‘T‘°° (6-19)
total energy flux demsity = ’ZI = C(T o‘; TM‘) T 03> (6-20)
total momentum density E,g = -'E(Tw) T 107 T”} (6-21)

The invariant trace of the total stress-energy tensor is

TJ‘J, = ((’fotcl—\—tjj -4 P)(_‘_)‘i'(e'\‘t‘ck‘*' tji - L"P(..)_I—-Lf-“n'_-l:' [(3?)2—5‘(%%)1]
; J [ > L (6-22)
=[e-3m+e’y] | +le-3P)+t’ ]+ @5 (28F]

where £y is the fluid energy density defined in (5-35).

-
If € and "do are respectively the total energy and momentum of

a finite system, it follows from (6-14) that

@ = ).{T °°& V3 =  constant (6-23)
3

1‘5’__ f/:p; c_{ V. = constant (6-24)
V3 ,
where the integration extends over all 3-space. The 4-velocity sz

of the entire system is defined as

Z( ’= 5 [5 “- CLFZJWL (6-25a)

! 4 2 1._97_ "I/L \
W’ch“[ﬁ -t J (d=l, ¢, 3) (6-25b)

—
which corresponds to a 3-velocity VY given by
—_—
—p ,
”o (6-26)

V= @
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The square root in the denominator of (6-25) is the total rest-
energy of the system, and the factor (c‘i/c“) in the denominator of
(6-26) is the total mass of the system in the observer's reference
frame.

Y4

Ir ‘g(*_) is spin angular momentum density of either charged

- Jrd

fluid, then the total fluid angular momentum M(t) is defined as

follows:
ixd ird

= J K2 K -id
M@) =/£&) + ‘é‘[/‘{v T(:) -/ T(:)] (6-27)

This definition can be written in terms of 3-vectors as follows:

-

-
F"(:) =’<{)(t) ol ?x’&@) | (6-28)

where
- 7. a %309 3le 120
x) = (M'M M‘17 M‘)(t)""'(M ) M J M >(t) (6-29)
—
t

M
230 @3lo 1.0
X( )=(X-; jﬂ,/a)(t) £<X 3) ,X )j )(x) (6-30)

= —_ i s 3
Fr=2_(n,4,2)2 (n,r,x°) (6-31)
Ceonservation of fluid angular momentum requires that

Tk

- ’ K . }
31 M (-t) = JE L’/%Jﬁ(i) - /X’k -glJ(t)J (6-32>
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O

where 'ﬁ,(__ﬂ is given by (6-16). This equation is equivalent to

Jef
the following condition on X(t)
_ Ik kd O (AR K

. : K
The definitions for the total angular momentum density .'[‘1[J 2

for the entire magnetogas-dynamical system including fluids and

fields is analogous to (6-27):

’ ij 1‘!&? . Kf "e
M E,XM v+ d, + ATV 4"TY) (6-34)

ThHe condition for conservation of total angular momentum is

Ju
VM = (6-35)

which is automatically satisfied if condition (6-33) is satisfied.

The integral form of (6-35) is

WJKEIMJkOJ V3 = constant (6-36)
V,
or
~—p - > -
7% =fﬁd V3 "—-‘-f[,gz}_j.;—:_).’..?xg]d%=constant(6-37).
Vs v
where

=Wy, My, W )2 (M0 ) (o)
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N
It is possible to define a 4-vector total angular momentum =
. . Jk ) wd'
in terms of the antisymmetric tensor 77{ and the 4-velocity of

the total system as follows:

Jkdn

J
2 =- -.—7. € ?/K WXH (6-39)

-
In the rest-frame of the total system (V‘:D) , we have

-—a
o forr V= O (6-40)



77 Sec. VII

VII SPINOR DESCRIPTION OF A PARTICLE

Tetrapod Description

The particles with which we are dealing, electrons and protoms,
have an internal structure characterized by a symmetry axis, as evi-
denced by the existence of particle spin and magnetic dipole moment.
They also possess a de Broglie phase, which must be regarded as an
intrinsic property of the particle. Thus, for a complete descrip-
tion of a particle, in addition to its velocity, we must specify
the orientation of its symmetry axis and the magnitude of its
de Broglie phase. As illustrated in Figure 2, this can be accom-
plished by means of a set of four orthonormal 4-vectors - one time-
like and three space-like-vectors° This set of 4-vectors is called

the particle tetrapod.

Time-like Vector Space-like Tripod
A
g F
symmetry
axis T
-
A
—
k
~ . T 7
reference ~ o o

/
]
/
I
y

axis

Figure 2 - Tetrapod Representation of a Particle
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The time-like vector of the tetrapod is the 4-velocity 143
(designated in the figure by the 3-velocity;}). One of the three
space-like vectors}z is used to specify the symmetry axis of the
particle. The remaining degree of freedom, the angleiF needed to
specify the orientation of the other two space-like Vectorsi:enu13?
about the axis}I, is measured betweeni? and a fixed reference axis
in the observer's frame of reference. The three 3—veetors$:,y’,
and}zare, of course, the space-like parts of three 4-vectors, kj,
Aj, and/pj. In the particle rest-frame, the time-like compcnents
of these vectors are all zero.

~
We postulate that the angle ¥ is, to within a proportionality

and we postulate the proportionality
-27
o]

constant, the de Broglie phaseA’

constant to be ﬁ/ﬁ_where h=1.0542 X1 erg-sec is Planck's con-
stant. (The factor Y% is necessary in order for the theory to yield
a particle spin angular momentum of &/1, which is regarded as an ex-

perimental fact with which the theory must agree.) Thus we have

E=4¢ (7-1)

(We shall later introduce the sign of the particle charge into this
relation, so that (7-1), like all the relations until (7-8), is valid
only for positively charged particles. For the moment, however, we

shall ignore the question of the sign of the particle charge.)




79 Sec. VII

It is with (7-1) that Planck's constant is introduced into the
theory. It should be emphasized, however, that in spite of the in-
corporation of the de Broglie Hypothesis into the theory which results
from (7-1), the theory is classical, rather than quantum-mechanical,
because no quantization process is introduced at any point.

From (3-2) and (7-1) we have
J ' o
p:—BJ@z—%BJw (7-2)

In the pariicle rest-frame this becomes

° 5 E v Ao ¢
PP = = meriA =B d¥ (7-32)
P=%k- 83y (7-3)

=]
-

o
where E is the particle rest—energy,/\ is the space-like part of the
°
4-vector potential, and Abis the time-like part which, by means of

a proper choice of gauge, could be made to vanish. Thus we see that
5 & .

-> L] *

the angular velocity of rotation of k and A about M in the particle

rest-frame determines the particle rest-energy, and the spatial rate

of change in the rest-frame, when we go from one particle to another,
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determines the particle momentum in the rest-frame which is just %7:\2’
Since a knowledge of the particle rest-energy at all points of space
amounts to a knowledge of the functionv\"\ which determines the iner-
tial properties of the particle as well as its scalar potentials,
we see that a knowledge of Qf at every point of space-time contains
all the information necessary for a complete dynamical description
of the particle.

Unfortunately, the function G)J is rather difficult to work with.
In the case of a distribution of particles all at rest with respect

P d

to the observer, and having their/% axes all aligned, ¥ is easily
determined. In the general case, however, (; is one of three Euler
angles that describe the orientation of the particle tripod in its
own rest-frame, which in general is not the observer's frame. This
matter is discussed at greater length in Appendix B. For present
purposes, however, it is sufficient merely to appreciate the desir-
ability of introducing a function having the essential properties of
a, but simpler to define and work with. From (7-2) we see that it is .
really the gradient of (J, rather thanr!; itself, that interests us,
so it will suffice to find a simply - defined 4-vector Wj that approx-
imates the gradient of "l)' (The choice we make for UJj will actually
approximate —%;bjt'ﬁ .) We define wj as follows:

J'-—- [ ‘; ’Q
w = N /’\‘,_t",B X (7-4)
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In order to see that

J

3

J ~
W= - Y (7-5)

ol
we note that in the particular rest-frame, W can be written

Bz~ L Ne(3'Y) (7-6)

I

where.g is the gradient operator in the particle rest-framegs. Now
if one pictures two neighbpring tripods whose orientations are nearly
the same (or a single tripod whose orientation is changing with time),
1t 1s clear that the contribution to (7—6) resulting from a differ-
ence (or a time change) in the orientation ofji»is very small com-
pared with the contribution resulting from the angular displacement
> 3 °
of k and A about}I. The fact that one of the two tripods we are
comparing may not be exactly at rest, but rather have a small veloc-
ity, makes only a very small difference in the right side of (7-6).
Thus, the value of Jsjis very close 1o what we would find in the
case for which all the tripods are at rest and have their/i%axes

aligned. This then is the basis for the approximate equality given

in (7-5).
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It should be emphasized, however, that this approximate equality
has been introduced only to give zn intuitive feeling for the phys-
ical significance of wj, but no use of (7-5) will be made in the
development of the formalism to follow.

We conclude this discussion of the physical significance of LUS
by noting that its time-like component is essentially the de Broglie
frequency of the particle, and its space-like part the de Broglie

wave=vector.

Rewriting (7-3a), we have

dy 2 E
a¥v - 7-7
T : (7-7)

Since the varticle rest-energy E must be positive, we see from Fig-

(]
-

]
ure X that the direction of rotation of k about);zis given by the
) Q
NN 3
left-hand screw rule. (k,X B and}z, in that order, constitute a
right-hand system of axes.)
3 s
Now let us identify the direction of rotation of k about/w with
the sign o (6°=X4) of the electric charge of the particle. Thus our
discussion has so far concerned itself only with a positively charged
particle. 1In the case of a negatively charged particle, we assert

1+
- Q
that the direction of rotation of k.about)a:is given by the right-

hand screw rule. Thus, if the (+) and (-) subscripts or superscripts
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refer respectively to positively or negatively charged particles, the

foregoing relations are generalized as follows:

@(1): - i:‘Q:WCi) 7-8)
P(t) - = @(t)': + X 3 "P(I) (7-9)
i@
Lt) =2 > )C(t) (7-10)
i § o~
Wy 2 -5 Yoy (7-11)
<d$ B - 1E(i)
ST U= ¢ 22 7-12
5= 3 2 o
From (7-9) and (7-11) we have
J Jd
by ™ T oy, (7-13)
and
° bo é
UJ(Z_) ~ * P(t) -t (x) (7-14)
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] Q
Thus, in contradistinction to Pgi) which is always positive, UJzt)has

the same sign as the electric charge of the particle.

We now complete our tetrapod description by normalizing the
four 4-vectors to e(t)’ the invariant particle density, rather than
to unity. In this way we have packed all the information we need for
a complete description of a charged fluid into the particle tetrapod.
Altogether this description involves seven degrees of freedom: three

- 3 . ~ .
forar, two fo§/~, and one apiece for W and . Since each of the
4=vectors has four elements, however, our tetrapod involves a total
of sixteen elements. But it has only seven degrees of freedom. Thus
the elements of the tetrapod do not represent the "normal coordinates”
of the problem. This fact makes the tetrapod difficult to use in
any formalism.

We shall now show that it is possible to express the four
4-vectors of the tetrapod as bilinear forms of the complex elements
of two spinors, each having two components. Thus the two spinors to-
gether have eight degrees of freedom. One of these degrees of freedom,
the phase common to the two spinors, will be used to specify the sign
of the particle charge. (It is shown in Appendix C that this iden-
tification, together with the spinor equations of motion, causes the
direction of rotation of-\? and ;o\} about/% to be dependent on the sign
of the particle charge, as indicated b& (7-14).) If we regard the

sign of the particle charge as a degree of freedom, then we can assert
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that the two spinors together are completely specified by eight
real functions and, since the charged fluid has eight degrees of
freedom, the two spinors constitute the "normal mode description"

of the problem.

Spinor Description

i

[
3

As é bréiiminary to introducing the spinors that will be used
to describe :the charged fluids, we must first iniroduce the irre-
ducible form of a 4-vector. For reasons that will shortly become
clear, the superscripts and subscripts used to label the elements
of a 4-vector in irreducible form will not be the usual ones
()= 0, 1, 2, 3). Rather, two indices & andle_, where A= 1, 2 and
2;:3; 5; will be used. The overhead bar in}? indicates complex
conjugation, and we shall see shortly how the need for such a nota-
tion enters the formalism. First, we must define the irreducible
vector elements in terms of the ordinary (reducible) elements. Using

the 4—vectmrg\uhlgs an exunnle, and omitting for the time-being the
L

(%) subscript, we have
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—. C/ 0 3y _ € Y
eu _E(u +u?) =€
X _ ° _ -
W =5 (u-ad) = Se Y
z_°¢

eut=S'-iu) = £ ey crberi® Y

H oo
e’ = £ (w'rinY) =& sy eadet?
where tan.s
-1
y = tanh (%) (7-16)

A A
and © and (Qare respectively the polar and azimuthal angles of a
system of spherical coordinates referred to the 2 axis as pole.

It is obvious that, for a rotation of the coordinate system

A
through an angle AW around the 2 axis, we have

(en'®) = e"'w(eu'i)

(7-17)

(¢ u‘T)/ — et @<€ u‘T)

where the primes indicate the values of the elements after the rota-
tion. Under this same symmetry operation, the components e?»{| and 67/\2\
are nnt, however, simply muitiplied by a constant as in (7-17).

Rather they become shuffled, i.e.. the expression for (Ful)/in—

| 2 / | Z
volves both € U and \PMJ and similarly for (f'b\") . Thus CU " and
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21
€U are irreducible representations of the symmetry group of rota-

tions about the 2axis, whereas €2al|and ("ML are not. Similarly, (’U'T
and C’Uliare irreducible representations of the symmetry group con-
sisting of all Lorentz transformations in the & direction, whereas
eu° and €u3 are not.

It is well-known that the equations of physics assume their
simplest form when they are expressed in terms of irreducible quan-
tities. For this reason, the components €1fwzon the left side of
(7-15) are to be regarded as more fundamental than the usual com-
ponents euj.

x o
We now introduce the two fundamental spinors € and X by means

of the following relation:

W' Wk £\ 2D (2T xF)
f’ 1\"'- uzi = fl + XL (7-18)

where

o . X P
=5 5 x7=X (==1,2) (7-19)
o «F .
On the left side of (7-1¢) we have arranged the elements of GZ{ in
the form of a 2 X 2 matrix, and on the right side we have the sum

of two outer products in which the pre-factor of each product is a
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column matrix and the post-factor is the complex conjugate of this
column matrix written in row form, i.e., its Hermitean adjoint.

It is convenient, as indicated in (7-19), to designate com-
plex conjugation of a spinor element by means of a bar over only

(%)

the index ' ', rather than over the entire symbol for the element.

Thus, the indices ot =1, 2 and ﬁz-l', 2 are regarded as entirely
independent; i.e., it is not necessary in the case of Gu«ﬁ_that,
for example,/Q = 1 when o = 1. A 4-vector in irreducible form is
characterized by one of each type of index. It can be shown that
an antisymmetric world tensor of second rank is characterized by

either two barred or two unbarred indices. A symmetric world

tensor of second rank is characterized by four indices, two of each

kind. In keeping with the customary notation, vector and tensor
ravging
indices,\over the values O, 1, 2, 3 will be designated by lower case

Roman letters, whereas spinor indices will always be designated by

lower case Greek letters.

()

A commonly used spinor notation employs a dot, rather than a var,

over the index. This notation is appropriate when the spinor so

B —

N
designated, e.g.f«, transforms like fq, but is not equal to fo(,

e,

. . . « . . .
i.e., it differs from 14 by a factor that is a scalar invariant.

&< : .
In crder to emphasize that £ not only transforms like fd, but is

exactly equal to it, we use a bar over the index rather:than a dot.
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In order to explain why two outer products, rather than just

one, are needed on the right side of (7-18), we note that, although
A

the spinorﬁ (or XOS itself has four degrees of freedom, one of

these, namely the phase factor that is common to both ﬁl and fa;

is suppressed when we carry out the outer multiplication between f"(

. . X x .
and its conjugate £ . Thus £ by itself can be used only to rep-
resent a 4-vector with no more than three degrees of freedom, i.e.,
a null vector. To represent an arbitrary time-like or space-like
4-vector, two spinors are necessary.

It is in the sense of the relation (7-18) that we may think of
spinors as the '"square roots" of 4-Véctors. In the same way that,
when we take the square root of a real number, we get an extra de-
gree of freedom, namely the sign of the sguare root, we find that
the '"square root" of a 4-vector has extra degrees of freedom. This

J oZ
is obviously the case because the 4-vector €U (orfuU ’3) has four
A x
degrees of freedom, whereas the two spinors £ and % together have
a total of eight degrees of freedom.
The physical significance of these extra degrees of freedom be-
. . q « .
comes clear when we note that, having the two spinors £ and X , 1t

is possible to generate the complete particle tetrapod as follows:
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eu*l= gef + i xf
C/m/?'___ £ g% — x*x”® (7-20)
kA= e ® + x e

fxx/E' - _ é(fo&xa'__ xcxg,’q

Thus the extra degrees of freedom are to be associated with the par-
ticle tripod (kj, AJ ,/"’J)_, and hence are the degrees of freedom
specifying the orientation of the spin axis) and the de Broglie
phase. The phase angle common to :o\ and Zq, which does not make
itself directly felt in the generation of the tetrapod, will be used
to specify the sign of the particle charge. (In Appendix C it is
shown that this identification has the consequence that, for solu-
tions of the spinors equations of motion, the direction of rotation
°

of i’and yabout/% is dependent on the sign of the particle charge.
It is only in this indirect way that the phase common to _f*and X,*
makes itself felt=—via the spinor equations of motion-in the par-
ticle tetrapod.) Finally, we note that it can be shown that the
tetrapod defined by (7-20) automatically satisfies the necessary
orthonormality requirements.

Equations (7-20) provide the bridge between the spinors ﬁq and
XN, which we regard as constituting the most fundamental description
of a fluid of charged particles, and the particle tetrapod in irre-

ducible form. To complete the formalism we need a bridge that
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connects the spinors directly with the 4-vectors of the tetrapod
expressed in the usual form, rather than with the irreducible form
as in (7-20). To accomplish this, we first rewrite (7-15) in matrix
form as follows:

e(t )

[u+ud]  Lu'-iui]

£
\}—7: [.74"";""\11 Luo_u31
(7-21)

=& e ) w(P Y+ 8)+w (53

—

o
We introduce the constant matrices 03 A defined as follows:

<A _ LIS «B 6\
=z (L0) == (Vo)
(7-22)
“ﬁ;_L_ °© -L> xB_ | 10
% ‘va;(e’ 0 03 ‘V‘f(o-l>

where, following the usual convention, the first index of indicates
the row of the matrix, and the second indexﬁf indicates the column.
These matrices, of course, are just the Pauli spin matrices. Using
these matrices, (7-15) or (7-21) can be written in the following

condensed form:
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eu® = 5}“'?(?%5 (7-23)

where, as always, a repeated index means contraction.

The matrices 03«'9‘ satisfy the following important relations:

x p~ e X P
c; o—_ﬁ = 44 S; (7-242)
AR K K
O Taa = JJ (7-24b)
and
a},o(ﬁ — O_./SO(
(7-24¢)
3 J
%a T %Ex

x o k ,
where ‘SG . JV, , and (S are Kronecker delta functions. and the mairices
’ l’ * J

—

J . « .
0—3/3 have the same form as the matrices o; A, i.e
) J T 1z
' o ] —
J T O_TL O:» 03' A
o = . ) = - = . (7-25)
ot/S a.,J O’j a_z\ 21 J
T % 3 O'J

J
(Note that in the case of 0;-(-/3 the barred index, which designates the

& .
row of the matrix, is written first whereas. in the case of o, ﬁ, it
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is written second and designates the column.) Using (7-24b), it is

possible to invert (7-23):

i_o %A
Cu' = og (Cu™”) (7-26)
. . J : _
Multiplying the equations (7-20) by e%d and contracting theg
and o, we arrive at the desired bridge between the spinors and the

entire tetrapod in its usual (reducible) form:

i

eu' = ox (£767 +x"x5)

Crr' = a5 (8787 - x*x%)
(7-27)
Cx’ = o (%% + %%

0N = —iog, (e*1 7 - x5 %)

Thus far we have used only contravariant spinors, whose indices
have been indicated by superscripts rather than subscripts. Knowing
the contravariant form of a spinor, we can define the covariant form
of this same spinor by means of the requirement that the contraction
of the two must be an invariant. Furthermore, this invariant must

be zero. Otherwise, as it can easily be shown, the invariant norm
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of the null vector that is the "square" of the spinor would have %o
be non-zero, and this cannot be. Thus we define the covariant spinors

_ix and X, as follows:

(7-28)

Thus

Similarly

A X" = 0 (7-30)

&
The contraction ofi( andl is, however, non-zero. It follows from

(7-28) that

'qud\:-’qud (7-31)

Thus raising one index in a contraction and lowering the other

changes the sign of the result. This is to be contrasted with the
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fact that when we do the same thing with the contraction of two

4-vectors, the result is unaltered. For example,
\

(35

J
by A = b U, (7-32)

For a further discussion of the algebraic aspects of spinor analysis,
the reader is referred to the papers of van der Waerden (11),
Laporte and Uhlenbeck (12), and Bade and Jehle (13).

By means of the relations (7-27), it is possible to write the
components of f?:) and X?t) for each of the two charged fields in
terms of the Euler angles that specify the orientation of the cor-
responding space-like tripod in the rest-frame of the fluid in ques-
tion, and in terms of the magnitude and direction of the fluid

| : velocity. This is carried out in Appendix B. However, for our
present purposes the complete result of Appendix B is not needed.
We only need to know that f?_-_,) and X?-'_») can be expressed in terms

A A
of two normalized spinors f:i) and )(a_) as follows:

L€ VL v
% ee ~-LWr Ax
fa :<T‘I )@) e Ly O
Xo( —(€e£€>l/z ﬁ:.'a;/l y/\o(
()= T—f " c C(x (7-33b)
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where
A A
24
(3, % )@) =1 (7-34)
'\0( Ao( . ~ .
and f(:) and X(:) are not functions of ¥, which means that they con- -

tain none of the high-frequency (of order of the de Broglie frequency)
time or space oscillation associated with% , but only the slow varia-
tion associated with changes in fluid velocity and spin orientation.

From (7-33) and (7-34), it follows that

te

(—fq Z“)(i) = (%—:} >(:) (7-35)

€ is the phase that is common to both [ and X*. It is obvious from
(7-27) that € has no direct effect on the vectors of the tetrapod.
Thus € is a disposable degree of freedom that we are free to use to
specify the sign of the particle charge. Thus we impose the following

condition on €4y )

cos €5y = X 1 (7-36a)

which is equivalent to

= 1 (7-36b)
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Thus (7-35) becomes

I+
S

(7-37)

<ik XOK)& =

1)

The condition (7-36) is fulfilled if we impose the following con-

straint on our spinors:

u@(f«lw)(t) =0 (7-38)

wherebe, designates the imaginary part of the argument. The only
constraint on the real part of <fo< k«)@__} is that it have the same
sign at every point of space-time.

From (7-27) and (7-35), we have the following expression for

the 4-velocity MJ as a function of the spinors:

J' - —\/L J- /3 —_ -

= ~”~ v x A, X
Z{(t) %l}(ff—x )(fvx )] 022/9(5 £ +x°X )JE(:!:) (7-39)

This identity is valid regardless of whether or not the constraint
(7-38) is satisfied. From (7-29) - (7-31), (7-24), and (7-39) it

follows automatically that

(U u 5)@) =1 (7-40)
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Thus the t{it)that we calculate from the spinors is automatically
normalized, and so when we work with spinors there is no need for
the troublesome nonlinear side condition that we encountered in
(6-1c) or (6-6024!$his is true even when the constraint (7-38) is
dropped which, as we shall later show, is permissible in problems
on a laboratory or astronomical scale.

Now let us estimate the magnitude of the error involved in the
approximate equalities (7-11) and (7-13). To do this, we substitute
the expressions for ki and As given in (7-27) into the definition of
OJJgiven in (7-10) which yields

j N~ J
Wey = -7 0 Yy + Ty (7-41)

where

$ A & A
Y(:) = J’(kﬂb f'i’”‘)(:) (7-42)

Comparing (7-41) with (7-11), we see that 'f:t) is the amount by

which (7-11) fails of being an exact equality. It is easy to estimate
the magnitude of T?i). Let L be a length characterizing the size of
the system in which we are interested. Now we have already noted

that because é\?t) and i\?t) are not functions of QJ, which contains

all the fast space-time oscillation associated with the de Broglie
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phase, they are functions only of particle velocity and spin orien-

tation. We shall limit ourselves to solutions in which no fast pre-

cession of the spin axis is present. For such cases it is always
'\o( ’\q

true that appreciable changes in f(*«) and ’,}:(t) occur only over dis-

tances comparable with L and in times greater than L/ . Thus it is

true that, in such cases,

T(:) ~ s (7-43)

where the symbol ~/ is to be read "is of the order of".
Substituting (7-41) into (7-9), we have

J

J’ . .
Py == Q=% ’ﬁ(wJ—TJ)(t) (7-44)

which is the exact version of (7-13).

We shall now estimate the importance of T(i) in (7-41) and (7-44).
In making these estimates we shall, to simplify the notation, drop
the () subscript with the understanding that the results apply
equally well to either charged fluid. First we note that, since

the effect of T in (7-44) is (as we shall see) small, we have

|4 W’ ~ mc (7-452)
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\’F\Co)lN\FlN |\ MAF| = mar (7-45D)

JI
where, for order of magnitude estimates, the contribution %-A to
; i
rf has been neglected. (The magnitude of A is, in any case, uncer-
tain because of the arbitrariness in the choice of gauge.) From

(7-43) and (7-45) we have

e -1
\\T °‘1 ~ ‘M;- = ‘?_— (7-46a)
l?' 'R L-' 4‘
13| -y =(T)(%—‘ (7-46b)
where
A= L (7-47)

is the Compton wavelength of the particle. ILet CKn) designate
"a function of the order of magnitude of the numbern". Using

(7-46), we can write (7-41) and (7-44) as follows:

%—ii = —ZCU)OD+0<5’L)] (7-48a)
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-

v$=1$\+o( ]

P° =och w°[l + O(,’t—)]

T; =och 3[\-&- O(%—C;r-)]

where 0°=%*1 is the sign of the particle charge.

Sec. VII

(7-48b)

(7-49a)

(7-49Db)

To estimate (*/) and (¥/)( /) we usek~ lO—”c_:ng which is

nwoo,
appropriate for an electron; L. ~ 10 coff vhich is the order of magni-

tude of the sun's radius; and N/~ lo'rcm/sec, which is the order of

magnitude of the rotational velocity at the surface of the sun.

For these values we have

A -4
T:'N |.Q
Xc -9
~ |0
LN" ‘

(7-50a)

(7-50b)

which are very small indeed. We note that, in the nelghborhood of

a stagnation point where A~=0, the contribution i'—A to P , which

we neglected in (7-45), becomes important. In such a region we
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should replace p~in (7-45) - (7-50) by \'3\:2.;‘,' . This guarantees that
the ratio (7-46b) remains small, even when o~= 0, since in general
A#0 at such points. (In fact, we can guarantee that this is the
case by an appropriate choice of gauge.)

The sole purpose of these estimates has been to demonstrate that,
at least for the type of problem in which we are interested, the
vectof euéthat we introduced to replace -%;zéar, which was difficult
to work with in calculations) is indeed very nearly equal to —412367.
(7-48) also provides the quantitative justification for calling w?®
the de Broglie frequency and :;the de Broglie wave-vector. When
we recall that, according to (3-2), Pj must be the gradient of a

and (71-49) that .
scalar, we note from (7-48)Athis is also very nearly the case for &Q{

All of the relations presented in this section have followed
directly from the definitions that provide the link between the
spinors K“;ﬁé“ and the kinetic and dynamical properties described
by the particle tetrapod. It is evident that any spinor equation
of motion that determines the space-time behavior of fegnuiﬂﬁxfor
given electromagnetic, gravitational, and thermal fields will in-
directly specify the equations of motion of the fluid quantities
described by the tetrapod, in particular the eguations of motion
of € and'uj. If it should turn out that the equations so deter-
mined are just the systems (6-1) or (6-6), then the postulated
spinor equationiof motioh for _f'o'(and'%,“ is the desired spinor

alternative to Euler's equation.
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In the next section, we shall postulate a certain spinor equa-
tion of motion, and then using the definitions of the present section
we shall derive the equations of motion satisfied by the quantities
described by the tetrapod. We shall find that the resulting equa-
tions are identical to the system (6-6) supplemented by an equation
of motion for the particle spin, which is interesting but, for the
purposes of magnetogas dynamics, not of primary importance. The
spin-dependent potential 3&1) in (6-6a) will be given as an explicit
function of g?t) and X:(t), and it will be shown that, for macroscopic
problems, a{t> is completely negligible compared with the poten-
tials AJ that are encountered in such problems.

Section VIII will merely summarize results. The derivation of
these results is carried out in Appendix C. For a detailed under-
standing of Appendix C, some prior familiarity with spinor analysis
would be helpful, and for this the reader is referred to references
(11), (12), and (13).

As a necessary preliminary to discussing the spinor equation
of motion, we note that the 4-gradient operator 753can also be written

with spinor indices. Thus, analogous to (7-21), we have

by .
9Ty Op, V-SR-S (& - i3] oo
= — 7-51
e o) T\ eiy) [k
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which can also be written

J
35, = ay O (7-52)
whose inverse is
B
9 = 5 3;,3 (7-53)

The following operator identities are also of interest:

A oL N RN 2
) 5}-,5:}7\/33 =1§A 5'4) :.}.‘._g:['_'] (7-54)
AV K _aA . ok L k
% e O e =md; %2 =360 (7-55)
From (7-54) it follows that
£ A&
0= %0 = b&_ﬁ} (7-56)

In the next section we shall work with the irreducible covariant

form A;Aof the 4-vector potential where

Az, ATZ> . tﬁkw Al [A-EAS) N [A°-As] LAstiAq] (1-57)

. - (/-2
Azv Aza Va | A, +cA] {A°"A3] NI\ FAL-AL) IAO"'/A;
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where we have made use of the fact that it is the contravariant form

*

AJ, rather than the covariant form AJ, that is regarded as the gener-
. . 9 A
alization to four dimensions of the 3-vector /-,\\=< 54 s A/1 R AE) N

The following identity is useful for evalﬁating FJk from A;’A:
M_AX W T K R Sk \Kady s dkEn
ry g o (3 A;ﬁ)=? (3,A%) —(¥A"-2’) =[5, A, (7-58)

= ¢ (%nl) - B

where we have used (4-3) and (4-5).
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VIII SPINOR EQUATIONS OF MOTION

Spinor Equations

We postulate that the spinor equations of motion have the

following form:

\ R _ V‘\’l‘(t)CM (x) 2 A )

Lf\saﬁf(:t) - v’ﬁ; Xa - EA&-/Sf(i) (8-1a)

' A _ Mot o % 8

- B‘*/37(@) == iz T ThAzXw (8-1p)
where

My = Moy |+ Fe +€Lt>/¢"] (8-1c)

We supplement these equations with the constraint (7-38):
o)
QX = 0O (8-1a)
%)
which is equivalent to requiring that

oS €= o 5 o=11 (8-1e)

where 0 is the sign of the particle charge of the fluid under
consideration,

We note that the signs preceding % in the above spinor egua-
tions are the  same for both charged fluids, The reason for this

is that the sign of the particle charge is treated as part of the
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solution of the spinor equations (the value of the phase €) , rather
than as a parameter in the equations.

The equations (8-1) are just the spinor form of the
Dirac equation with the genmeralization that the mass includes
contributions arising from the gravitational and thermal energy.(*)
It should be emphasized, however, that, except for the incorpora-
tion of the de Broglie Hypothesis into the theory, which introduced
Planck's constant as a proportionality factor relating Q(t) and ‘3@)
(ef. (7-8)), the theory developed in this paper is completely
classical in spirit. In particular, no quantization process has
been introduced.

It is really not surprising that a Dirac-type equation
should be the first candidate for investigation in a theory like
the one developed here, since this equation is the simplest first-
order linear equation that incorporates a scalar field (V\Lj\(i)) and

a vector field(A and also guarantees that the observable

)’
s oo s RIS .
quantities of physical interest ((’, ER ,/H , W )(+) do not contain

(*)See, for example, ref, 12, p. 1393, eq. 1. This equation does

not include the factor VZ appearing in (8-la) and (8-1b) simply be-

cause of a difference in the definition of the matrices Gf;/s.
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oscillatory terms with frequency of the order of the de Broglie

frequency.

Derivation of the Euler System of Equations

Using the spinor equations of motion (8-1), and the definitions
of Section VII that relate the observable quantities described
o o
by the tetrapod for the fluid to the spinors f(.._:) and X(t) , 1t is
shown in Appendix C that we can arrive at the fluid equations of
motion in terms of these observable quantities. In this section,
we shall merely exhibit these equations, and discuss their physical

significance. The most important of these equations are the

following:
3 (ew') @ = (8-2)
J _ _ J g,y
F(t) - B (I)(i) - (MCM )(.._._) ™ __c,q;l_A)-\' a"(‘-t)il] (8-3)
where
§ 5 e
aci) = t—{—-(‘ﬂ’ "“’T\ )(t) (8-4)

i
where T(:) is defined by (7-42) and

| i k&1 3
Ty = I"éf% 2,(047) ~ [u3(en ) u %cn (8-5)

5 [6" €754 %, 2y (€ o) —A/jku‘?aﬂ(k]

)
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The M¢s) that appears in (8-3) is defined as follows:

My = Mey + My (8-6)
where
Mo = %*[zmmc /‘Vm( m)} e
where =-a [“"mc /w ( B e ?](:)
ﬂ: = 3'al, - ¥al,, (8-82)
65 F%F7°) = (e ,ey,8,).= €
(8-8b)

a3 .3 kN
_(‘F 5 £ )‘F )(t)E (},4_5 \;A“ bi.)= ?@)

1)

and the overhead "o" in (8-7) indicates the value of the 3-vector
in question as seen in the particle rest-frame. (Note that, in
> >
general, B in the case of the proton gas is different from B in
the case of the’electron gas because the two rest-frames aredifferent.)
Note that the definition for Mgy in (8-6) is implicit,
rather than explicit, because Y'X(.‘_.) involves M\ ¢ty itself (rather

than W\&)) in the denominator.

Comparing (8-7) with (6-1f), we make the following identification:

2%

= T g
M T IMge e-2)
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where/mQ:) is the magnitude of the magnetic dipole moment of the
particle, (8-9) is just the dipole moment that the Dirac theory
yields (g-factor equals 2), with the modification that the total
mass hﬂ(t), rather than the free-particle mass Mcx), appears in the
denominator.

The equations (8-2) and (8-3), together with the automatic
normalization of the 4—Velocity'uit) that was demonstrated in
(7-40), constitute the system of equations given in (6-6). From
this system we can derive, as was shown in Section VI, the
Euler system of equations (6-1). Thus we have shown that a
solution of the system of spinor equations (8-1) automatically

yvields, via the identities of Section VII, a solution of the

Euler system of equations (6-1).

Magnitude of Spin-Dependent Electromagnetic Field

Now we shall demonstrate that, for magnetogas—dynamical systems
on a laboratory or astronomical scale, the effects of the spin-
dependent field fii) are completely negligible., (Recall that ff;
has its origin in the small contribution § Pit)to the fluid
momentum density that resulted from the presence of the spin

Ik
angular momentum density. Thus f(t) is really a spin-dependent

mechanical effect, although it has been treated, for reasons of
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intuitive clarity, as a contribution to the electromagnetic
field.)

In Appendix C it is shown that, for solutions of (8-1) that
yield functions for €, uj,’/vi and UJ;that change significantly
only over distances of the order L and in time intervals greater

than L/, we have

&

\ ’C@) x> (8-10)

where { is the fine-structure constant:

0

= %c T 137,09 (8-11)

Table I summarizes the comparison between ‘¥(+j\ and the magnitudes
\ F \of the electromagnetic fields encountered in the sun and in

a system of laboratory dimensions. Only crude estimates for the
lower limits of \Frjk\have been given, but these suffice to

indicate that in macroscopic systems the effects of fi;a are
completely negligible., The third line of Table I has been in-
cluded merely to demonstrate that, if one were to attempt to use

the spinor fqrmulation of magnetogas dynamics to construct models

of nuclei or elementary particles, the effects of the spin-dependent

ik
field ?(t) would be not at all negligible.
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Table I
, Ik dk
L(cm) Ty (Gauss) \F' (Gauss)
Sun 10M olal >1
Laboratory 1 1077 >1
-13 A
Nucleus 10 10 10"

Effect of Variable €

The side condition (8-1d) is analogous to the 4-velocity
normalization condition (6-lc) in the Euler system of equations
in that both conditions introduce an algebraic nonlinearity into
the problem, since they are quadratic in the unknown functions.

We shall now demonstrate, however, that the spinor system of equa-
tions has the great advantage that, for problems on an astronomical
or laboratory scale, the nonlinear side condition (8-1d) may be
ignored.

In this regard, we already noted following (7-40) that dropping
the constraint (8-1d) has noE effect on the automatic normalization
of 1*?1)' Moreover, in Appendix C it is shown that, if we ignore
this constraint, no change in the continuity equation (8-2) re-
sults, and the effect on (8~3) can be represented as a spurious

§
mass contribution (Ae m) and a spurious 4-vector potential (AeA )

(%)

£’
ik
Under the same conditions used in estimating ‘§(m\ , we find

~ ‘ait)\ ( im) (8-12)

,(A‘- 3 ><:) =




113 Sec, VIII

where A (t)is the Compton wavelength introduced in (7-47). Thus,
for macroscopic systems, the effect of (Ae Aj >(t)is even smaller
than that of éLJ(-«_-), whereas, for systems of nuclear dimensions, this
is obviously no longer the case.

In order to estimate the effect of the spurious mass (AGYV\)@),
we note that this may be regarded as arising from a spurious con-
tribution to the specific enthalpy, which in turn may be regarded

as arising from an error (Ae T) in the fluid temperature. In

)
Appendix C, it is shown that

‘(AeT)m ~ <vﬂ%—c~?)(%)& (8-13)

where k is the Boltzmann constant. In Table II \AQT(-)\ (i.e.. the

error in the electron temperature) is compared with the range of
temperatures encountered in the sun, laboratory, and in nuclear

systems, (The case for protons leads to even smaller estimates.)

Table ITI

L(cm) |BeTey | (9x) T(K)
Sun 10 10733 10°-10"
Lab 1 10~ " 0-10%
Nucleus 107" 10'* 0-10'°

Obviously, the effect of AT, is completely negligible in the
€ '¢x) Y

first two cases, and not at all negligible in the last case,
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Finally, it is shown in Appendix C that

&(*.) .

L [T ~ A (8-12)

\éq.;)\ ~
Thus, neglecting the side condition (8-1d) in the case of macro-
scopic systems will not produce a change in the sign of cos eaﬁ
which we interpret as the sign of the electric charge of the
particle., Another way of interpreting (8-14) is to say that, for
macroscopic systems, the equations (8-la) and (8-1b) come very close
to satisfying the condition (8-1d) automatically, without anything
being done to bring this about.

In summation, we conclude that, in the case of macroscopic

magnetogas-dynamical systems, ignoring the side condition (8-1d)

will introduce no significant error into the solution,

Stress-Energy Tensor

In Appendix C it is shown that the following equation results

from the spinor equations (8-1):

o . . d
6 T(*) d T [ebj(mc ):](’:3 + FJK(O“‘{.f“k = 'ﬁ_, ) (8-15)

(€
where

T<t> lew e u W o—ﬁc_ W en) - The e’ ‘),guﬂ] (8-16)

and ‘ﬁJ(:)is the 4-force density acting on the fluid,
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We see in (8-15) that it makes no difference whether we con-
J Kd . .
tract }% witthzz; or leay - This is a non-trivial result, inas-
much as the tensor'TZ; is not symmetric.
Equation (8-15) justifies our regarding'TZi; as the stress-
energy tensor of the fluid. Comparing (8-16) with (6-11), we see

that t the spin-dependent part of the stress-energy tensor,

)’

has the following form:
x
t(t) = Tt\c_ [u 5A(e'°’u) - f’/i)uak?/\,q]@) (8-17)

Angular Momentum

In Appendix C it is shown that the following equation results

from the system of spinor equations (8-1):

Y ]
B M, = t__]:,,L ) ”’Kﬁ*m} (8-18)

Comparing (8-19) with (6-27) and (6-30), we make the following
identifications:

¥ ~f _ikan
Ao, =— 2 & (e (8-20)

= ()




o~

de

and
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je

6= (X"s: ’X“:X )(t)

Thus r—-f(f/z)(t) is the spin angular momentun density and, since (€u°)(._,)

O;,?— (€3 )y = Keuo)‘(fl;f— {—)1 W

. kA~ _
is the particle density in the observer's frame, (6-7 f':: @ is the
spin angular momentum of a single particle in the observer's frame.
In this regard, it is interesting to note that it follows

directly from the Lorentz transformation that

~_ 32 a2
..1:‘_: __/,v“ + T (8-222a)
where
S >
[ N —>
/‘IJ" = ’%—;;) N (8-22Db)

0
-
is the component of /'7» parallel toa”, and

- (N‘x;:))( prd

= (8-22¢)
/NJ- /0""
s -
is the component of P perpendicular to#~. Thus
-
i (f‘) —> (8-23)
" /0

B> c
which corresponds to the well-known property of particle spin to
align itself parallel or antiparallel (depending on the sign of

in (8-22b)) to the particle velocity at high speeds.
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Finally, it is shown in Appendix C that in the fluid rest-
frame the following equation is valid:
-]
ch > S
d(T#) R &N > D
| = (e ) X (BB)| e
This equation describes the precession in its own rest-

e S
frame of a particle having a spin angular nwmentun(‘a{“ /")(t>and a

©
—

magnetic moment ( LN C/")( 5] corresponding to a gyromagnetic ratio
(MC»/(*') which in turn corresponds to a g-factor of 2 (referred,

of course, to the total particle mass M@_-) ra’chero than the free
particle mass M(t)). The precession produced by -g(-_.._) can be regarded
as the result of a self-interaction of the electron or proton

o, 3
fluid with itself. In any case, Table I shows us that ] bm\ <« \ B \

for macroscopic systems,

Dimensionless Form of Equations

Let us refer the particle masses to the electron mass We

where
-23
u107x10  gm (8-25)

Thus, if wm., and M () are the electron and proton masses respectively,

we have

7 .
M(_) - e — 1 (8-26a)
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M)

M(+)'—'—' e - |€36.1 (8-26b)

where the dimensionless masses have been indicated by an overhead”

stroke. We shall refer all lengths to the Compton wavelength of

the electron Ag where

4

Ae = -)F—‘ez = 3.8¢2X |0 cm (8-27)

Thus we have the following relations between the dimensional and

dimensionless (indicated by a stroke) quantities of principal

interest:
t:(;gﬁ/g)/i" = 2932 X107 A4° see (8-28a)
mjz ﬁe/fo" =3.?ezxro'",¢j m (8-28D)
Bj: x;' bld, = 2.590 x/o'o/aj cwv—/ (8-28c)
0= %,:L [ﬁ = ¢.707 X 16*° [51 em™ ™ (8-284)
uéi) = {{jt) (8-28¢)
w(ji.) = ﬂ:égt) = 2.590Xx /0 'oci)‘(;_t) em™ (8-28¢7)
Copy = A?ém = 17372 x10% €, em™ (8-28g)
(&5 X gy = 252 (8-26n)

= 4,168 x 16" (% 1) em™ %
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AJ=(9§(¢\Q)\A°' = 2434 A statvelt (8-281)
Newy = ¢ 7?ct) = 4, 802x/07"" f,, statvelt-em  (3-28))
e o (4/ ),\g) Fiv = 3 220x0" {éjksTaTvolf/cM (8-28%)
%?-Cdc") %,—-_- é,ssyx/o'g?’, eré@m (8-231)
Ry= (=) () = 6.5 58 x m"(ﬁ\?:)&)erg/gm (8-28m)

Two dimensionless coupling constants will be needed: the

fine-siructure constante,
3 l

¥ -
= '1 o — e eeaaee -
e 7.297 Xt 37,57 (8-29)

7’
and the dimensionless gravitational constant,ﬂ,

X =

s 2 ~ 43
M= F‘(m% = 2,398 X |0 (8-30)
%
The dimensionless spinor equations (8-1) have the form
$ 868 Yc’(t) 7(%) 54 z .3 c -7 .7 <A .
LOzefy = T Az + “{m“)[?J’(HQ)m] SRR N f<r>} (8-31a)
Z /ﬁ _ %(t) /(t) . P , 7 P / 7z 7 } /[3 _
OnaKeey = Tz Cx s [§+R) ] $ + [Ag+ Baﬂmﬂ x(:)} (8-31b)

% -
where 77@% and 7(69 are dimensionless real scalar functions of the

space-time coordinates that determine the gauges of the 4-vector

potential that one chooses to use in the solution of the spinor
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equations for the electron and proton gases. There is no need
that the same gauge be used in the two cases. These scalar func-
tions, which did not appear in (8-1), have been inserted in
(8-31) simply to make the arbitrariness of the gauge more explicit.
The algebraically nonlinear condition (8-1d) has not been
included in (8-31) because we saw that ignoring it introduced no
significant error into the solutions of macroscopic problems.
The field equations (6-8) in dlmensiénless form are as

follows:

. Ceny aﬁ'm R '] ﬁc*)B ev) (8-322)
®)

5 L \(3=D

e R =[(88)7], (-325)
¢ érfﬂ)c_)] (8-320)
, A v Zocd V2 Za 2

Gy =T | £,%7) ,, = | -8, oo

(é &&'/g>(_t)= (/-,; E,S + i; 7,(,3) (8-32f)
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or, using (7-28)

(8-32¢g)

where the vertical bars in (8-32e) indicate the modulus of the

7/

/
invariant (€,X*)  which, if (8-1d) is not satisfied, will be

ey
complex (although the imaginary part will be extremely smail for
macroscopic problems).

Note that we have written the electromagnetic field equation
(8-32c) in terms of the irreducible form A;Acf the 4-potential

instead of the usual form AJ because it is A that appears in the

A
spinor equations (8-31).

In (8-32a) and (8-32b) both the differential and integrated
forms of the "thermal field equation" have been given.' For problems
involving harmonic expansions, the différential form (8-32a) would
probably be more convenient, but for the purposes of the present
discussion we shall refer to the integrated form (8-32Db).

It will be noted from (8-32) that the source terms of all

"the field equations are algebraically nonlinear expressions of
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the spinor components; but, given the functional dependence of the
spinor components on the space-time coordinates, it is a simple
matter to determine the source terms and then solve the field
equations. (Working with (8-32b), one would use the binomial
theorem to generate a series involving the ratio of the higher

the harmownic expansion for f
harmonics in ﬁ\to the lowest harmonic, and then terminate the series
after enough terms to provide sufficient accuracy.) The fields
found by this procedure could then be substituted into the
spinor equations (8-31) in order to calculate spinor funcitions
more accurate than those used to calculate the fields. The solution
of the equations (8-31) for givenﬂé,%i, and Aiﬂ is no problem
since the equations are linear. This procedure is the basis for
a straight-forward iteration solution of the complete magnetogas-
dynamical problem. The equations (8-31) have been cast into a
form in which all the interaction terms are contained in the square
bracests preceded by the coupling constant o(::;%%;. The smallness
of this constant encourages the hope that the convergence of the
solution would be rapid.

It has been noted that the gauge function f%(r)is completely
arbitrary, and its presence in the spinor equations is a great

asset since it can be chosen partially to cancel out unwanted

z
vd
higher harmonics in ? and ficgmmich necessarily arise because the
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source terms of the field equations are algebraically nonlinear
functions of the spinor components, To a lesser degree the
constants l/'i“_) and \:l(-) may also be adjusted to minimize the
effects of higher harmonics, but we must recall that the choice of
these two constants is restricted by the constraint (6-9) which

in dimensionless form reads

7/ L

Me e = ey Hey (8-33)

How close this relation must come to being an exact equality

™)

-3 >

depends on the magnitude of the difference between ﬁ,(—) and €

and how great a difference between the temperatures of the electron

and proton gases one is willing to regard as physically admissible.
It has already been noted that there is no need that 7?(*—)

and ﬁC_) be equal. Mpreover, we are free to choose different ’Jé&)

and t-/{(i,)at each different stage of the iteration. It may even

be possible in certain time-independent problems to choose 7%&)

and f:l(t) in such a way as to allow a separation of the angular

and radial dependence of the equations. In such a case an itera-

tion procedure would be unnecessary since the system of partial

differential equations would reduce to a nonlinear system of

ordinary differential equations which could be solved by numerical

means,
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In order to make the significane@oﬁ{’%a4jclearer, it has
been shown in Appendix C that introducing a gauge transformation
characterized by the real scalar function %Qt) is equivalent to

’ PRIV, 4 , (X%
miltiplying £ ('1) by € UMD ana 15 by € KoN
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APPENDIX A: ENERGY INJECTION AND VISCOSITY

Energy Injection

In Section II we saw that the possibility existed of taking
energy injection into account by choosing an appropriate func-
tional form for Qj(t) . Let us postulate the following form for Qé:):
Q:,,_) = (/\ e )(t) (A-1)
where /\(1) is a scalar function of the fluid coordinates whose
physical significance is discussed below. Substituting (A-1)
into (2-22), we find that Euler's equation in the fluid rest-frame

has the following form:

\: [ﬁ’méj'_ -\-%—TP‘ + C(/\mcz)](t) (A-2a)

o

{e(b%ﬁ%)ﬁw%@): - [e m%gf +§>P](t)j: 26, E  (a2v)

Thus‘ the choice (A-1) produces no new 3-force in the fluid rest-
frame, but it does produce a new term f(AWCl)in (A-2a). This
corresponds- to an energy injection into the fluid in which A
represents the fraction of the particle rest-energy that is in-
jected per particle per unit time. Obviously/\ has the units of

inverse time.
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In general, (/\W\C'L)G);f (/\V"‘x)c_). The reason for this is
that the nuclear reactions give the injected energy to the protons
rather than to the electrons, and it is only through collisions
that the electrons receive their share of the energy. If, how-
ever, we assume that energy equipartition establishes itself
instantaneously (i.e., in a’time very short compared with the time

for the fluid to move a significant distance), then
m = m (instantaneous equipartition). (A-3)
(W) = (Am) e

Although energy injection introduces no new 3-force in the
fluid rest-frame, we note from (2-22b) and (A-1) that in the
o\s -=» —
observer's reference frame a 3-force (GZ()KAVnAf)appears, where Awma-
is just the momentum per particle that is injected along with the
energy. (If the particle energy, hence its mass, were increased

without the supplementary'forcezAwME then, by Newton's Second Law,

7
the particle would necessarily slow down.)

Obviously, (A-1) applies to the case of energy loss (through
radiation), as well as to energy injection. It is only necessary
to make /A negative instead of positive. For negative A, the force

Awdg represents a drag on the particle. This is the radiation drag

that occurs when a charged particle loses energy by radiation.
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As was emphasized in Section II, the use of (A-1) instead of
the adiabatic condition (2-30) makes no difference in the form
of Euler's equation written in the form (2-24). It does, however,
change the "thermal field equation". From (2-15) and (A-1) we
see that, instead of (2-31), we have
J 3 i
[ ~a-iR e -yac(eud] =0 @
Viscosity
For the sake of illustration, a rough and simple way will be
given to take into account the viscous interaction between the
two chamnged fluids. Let
i _ F [ j ;

Qe = femy,, L& Whny ~(€W)es) (a-5)
where F is a suitably chosen invariant function of the fluid
variables which has the dimensions of a force,

Now we note that for the proton gas, for example, the term
(QV“CJQOL*)on the right side of (2—22&), which represents the rate

of energy injection per unit volume, has the following form:

(GMCQ°>C+) = Ceru°>(_)_—(euo)(+) (A-6)

The quantity in the brackets is the total chamge density which,

because of the electrostatic screening effect, must be everywhere
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very close to zero. Thus, the energy injection is also very close
to zero. The energy injection for the electron gas is just the
negative of (A-6). Thus the energy gained by one field is lost
by the other, and the total energy generated is zero.

We note that the force term (?VV\ar) n the right side of

P
(2-22b), which represents the viscous force on the proton gas,

has the form
€mT ), = L [(Gu?)(_) = (eus ><+)] (4-7)

The second term in the brackets represents a dragging force that
acts to slow the proton gas down. The first term is a force
which tends to accelerate the proton gas in the direction in
which the electron gas is moving. These are Jjust the effects

we would expect viscosity to produée. The viscous force acting

" on the electron gas is just the negative of the viscous force
acting on the proton gas. If, for any reason, we wished to free
ourselves of this constraint, we could do so very easily by
modifying (A-5) so that Qiﬂ and Qé_) involved different invariant
functions Ty and Fey - In this case, the total energy injected
into both-fields at each point in space by means of the viscous

forces is not in general zero,
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.

J
From (2-15), we see that when ©(zy is given by (A-5) the

"thermal field equation" has the following form:

‘ e de 1 XFrendy] = cew') _
[Qbﬁ—(x |)£é€+m(euﬂm_ F ¥ L_"‘_J(:) (A-8)

The approximation based on (A-5) does not take into account
the self-interaction of either fluid with itself that results
because of viscosity. To do this we would have to introduce
derivatives of the velocities into (A-5). In particular, we would
introduce a term involving a suitable covariant generalization of the

> =7 2
expression (V¥ )\W&).
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APPENDIX B: EXPLICIT EXPRESSIONS FOR THE PARTICLE SPINORS

We saw in Section VII that the particle tetrapod has seven
degrees of freedom, one of which, the particle density €, drops
out if we work with a tetrapod normalized to unity. The remaining
six degrees of freedom are to be identified with the three com-
ponents of the particle velocity, and the three Euler angles
needed to specify the orientation of the particle tripod in the
rest-frame of the particle,

Rather than use the three Cartesian components of the particle
velocity, we shall. use /3=/V‘/c_ and the two spherical angles &
and C,P\ that specify the direction of the particle velocity in
the observer's reference frame. (The caret over & and@ merely
indicates that these angles refer to the velocity, and distinguishes
them from the angles §,$ which will be used to specify the
orientation of the particle tripod.) Thus we write the particle

4-velocity as follows:

2\~ .
w=(-8Y"" 5 p=rk
u' = U°B sin € cos §

N =us s & sin c/é (B-1)

(\,
©w
I

u°43 cos &
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(There will be no need in this appendix for (+) and (-) subscripts
since it is understood that everything applies equally well to
either of the two charged fluids.)

In order to specify the angular orientation of the particle
tripod, we imagine that the observer accelerates himself and his
coordinate system in the direction of the particle velocity until
his velocity is the same as that of the particle, i.e., until he

is in the particle rest-frame. This is accomplished without

(-]

—;
rotating his coordinate system. The orientation of the tripod k,
3 g ~
A, and/-; is then easily specified in terms of the Euler angles (,
&

, and ‘:f, that would carry the observer's own 4, #, and 2 axes
over into the positions occupied by the)—z),-%, and/% vectors
respectively. Thus, we first rotate the observer's tripod of
coordinates axes an’ angle C? gbout his z axis, then an angle &
about his y axis, and finally an angle ’q? about the direction in
which the observer's z axis finds itself after the first two
rotations have been carried out. The observer's tripod, like
the tripod (%,}% ,/l%) is assumed to constitute a right-handed
system, and the positive directions for the rotations are given
by the right-hand screw rule. Note that & specifiege the rotation

about the y axis, rather than the x axis, as is frequently the

case, The reason for this choice 1s that is makes the angular
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Q
gependence of f similar to that of (U, %*) in (B-1). Thus

we have

sin & cos §

X

/:at= SiV\ 4 S\‘n 0.’5 (B—Za)
/33-.: cos &

- ~ ~ ~ . ~ . ~

X = o5 ® cos@ coes Y — sSine sy

):" = cos & sim@ cosy + cosP sim Y (B-2b)
k2 = —sin & cos @

N A ‘ ~s ' ~y ~

A = —(cos & cosP sin¥ + sind cosy)

[} f ~ ~ ~

A= :—(c,osg sin® sinV — cos® cosy) (B-2c)
(-] R N

)\3 = Sin & sn ﬁ

The expressions (B-2) are valid in the particle rest-frame.
It is now a straight-forward matter to transform these three
—?
vectors to the observer's original frame of reference. Let Ay

be the velocity unit 3-vector, i.e.

R1Y

= e = (sin € cos (3) sin & s§nc'\p) cos é) (B-3)
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Then from the Lorentz transformation we have
=W () (B-42)
Fom Gy s pP) = e ) () (B-4)
where
/:':.,\T—.'=s;vx§sfv\g cos(@-G) + cos & cos & (B=sc)
K= wa (k) (B-52)
F =15 ) = K+ aomn(2) 7 (5-51)
where
k%,J—T = 5M8& s (P-F)sin® +s5in8 cos & cos(G-G) cos P (B=5¢)
—cos @ sin & cos ¢
A= ue R ) (B-6a)
Q 0
=050 0) = X+ (-0 F) A (B-6b)
where
;%-,G?: Sin & sin(G-8)cos¥ — sin & cos(§-B)cosE s P (B-6c)

+cos & sin®& sin ¢
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By means of (B-1) - (B-6), all sixteen components of the
tetrapod (normalized to unity) have been specified as functions

A A A Y ~4
ofR,&,9,5,¢, and ¢¥. We must now find expressions for the
components of £ andX* in terms of these variables (plus € and
€) such that the relations (7-27) are satisfied. It can be verified

by direct calculation that the following are the desired expressions:
) 1 v L €e-w) A

f = 2 Yo e 2, ex( W)i“ (B-7a)
3 -1 . &'_ o A

X =2 Ve e 2 Cl(€+W) XK (B=7b)

where

(AN A ~ _‘
N :[cosh V. + sinh Y4 cos 9} cos P e L@ (B-8a)
. ! ! ~ —L' '\—(-6?.
+ sinh Y4 sin® sin Sh € (&- @)
f"__ [c . Al o e, L@
= |cosh Vo — sinh Va cos G:] sith 84 € (B-8b)
+sinh W2 sin B cos &, e (©T W)
A' 4 A ' A —’~
X = —|cosh ¥z + sinh V/x cos §]sin & € ‘G (B-8¢)
+simh YA sin & sin 8§ g~ @@
= [cosh V/a. — swh Y2 Cos é] cos O/a € -8d)

(&- &h)
— sinh Wy sin & sin S, C
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where
V= tanh—l A (B-8e)

and

cosh Y = [ (u+ )

3 (B-8f)
stmh Y = V'?(@@—- )
Let us now find expressions for the variables €,€, 8, é\,
Cz, g, C’(\;, and jSn terms of the spinors f“ and Xo( From (7-35)
we have
! )5 Ya,
f"il(qu )(f,-gk' )] (B-9)
and
' x 7 Vo
L€ o
€ = j;“)%— (B-10)
& X

In order to find expressions for the other variables’ it is

convenient to introduce the functions A and B defined as follows:

| [N e
S b e = AT cos 8, 5O

0 AL —'ﬁ'. N—N
-\)z(u°+l) sin &y € =(v=) (B-11b)

= = =
& Vg
S T
B= S —
Vex™ Gz

1

A

(B-11a)

>
|
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From (B-11) it follows that

~ AA—BB
COS & = —ireie _
° AL TEE (B-12)
& _ B |"™
e P (B-13)

AR
= lA B] (B-14)

In order to flndﬁ 8 and CO, it is most convenient to use the

following relations,which result from (7-26), (7-25), and (7-22):

9

eu’ = V_L{[f‘fﬁ— e e +x AT+ XX (B-152)
Cu = CuR sin & cos & =\Z m[f'fi-\-?c'kz_] (B-15b)
fMl=€7/\°/3 sin & sin (5 = —([Z V,Q[f‘_fz—kk'?(z] (B-15¢)

Cw'=eup cos & ==[e'eT-gM e 1] (ase)

]
Having found U from (B-15a) and (B-9), we use the following

relation to find
Vo
= 1] (27

From (B-15b) - (B-15d) we have

{
tan & = #[{u')"-t-(u‘)‘] A (B-18)
tan @ = Wy (B-19)
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In the solution of a magnetogas-dynamical problem of the self-
excited dynamo type, we would solve the spinor equations (8-1)
14
or (8-31) and arrive at expressions for fo( and X as functions
of time € and the spherical coordinates r,&, and @. We would
A A Aw A7 A
then use the above expressions to find f’,/S ,0,0,8,@, and ¥

as functions of the coordinates (t,r , &, @),
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APPENDIX C: DIFFERENTIAL, SPINOR RELATIONS

Observable Quantities

Using the spinors f(x and lx, and the gradient operator )5/3
(or 35) as the basic ingredients, it is possible to construct
many differential expressions. Before any physical meaning can
be given to these expressions, however, it is necessary to translate
them into expressions involving the observable quantities €, € s

) 3 j J
uJ,/wJ, WJ, and A kwhich are defined as follows:

E'ef-e’.—:-. VZ (£.x%) (c-1)

D
S‘G
i

On (276 + 121 %) (c-2)

ez oxiy(2 % -1 *15) (c-3
= /\XBJ‘):X (C-4a)
where
cr’ = O%i(iﬁxg+xﬁf;) (C-4b)
OX = — o (€877~ 7¢%) (0mte)

3
Using (C-4b) and (C-4c) in (C-4a), ¢ can also be written as

follows:
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oJJ___,bQ? [(Vé:“) Bd V%F)] (C-5a)

or
o= gU =l AN N #)
S .\Cf«zj (7( f,g —_f@ Y& (C-5b)
The dual tensors AJk and//;\)“‘ are defined as follows:
' J' X 1
A/Jk - _g K nu}/wn - "'\5'. EJKZH'/E\Qn (0=6)
Ak Y34 |k ]
A2 e M p, = upe =y (¢-7)

The following orthogonality properties result from (C-6):

A U = MJA, =0 (C-8a)
K AT

A’/"'v\ =A== 0 (C-8b)

N '
o
It can be shown that A)‘\K and /&Jkare related to the spinors _(’

and %o( as follows:
,&Jk:‘ ﬁ Efylvr?’kxcjﬂ)\ﬁ; (gqxﬁ '\'X«fﬁ)] (6-9)
A)Jk _ —l[(m”)"y“ozﬁxaai(f“z,s+X°‘f,s)] (6-10)

Thus we see that the symmetric spinor expression <f°(,2/5+2'°(£ﬂ) is

to be assocated with the dual tensors /X,Jkand /A)Jk. The antisymmetric
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spinor expression (f“}fﬂ - %q_f/s) - gorresponds to the

K
Kronecker delta function gJ as shown by the following identity:

§i == &) op o (€ 7,-1"¢) (0-11)

n this appendix we shall have no need to label quantities
with the (+) and (-) subscripts. When the sign of the particle

charge enters an equation it will be indicated by ¢, where O =*1,

Gradients of Spinors

Using the definitions (C-1) to (C-5) it can be verified that
the following expressions for the gradients of £ Aand )(,6 are valid

identities:

\

=§"3[L1 3 b € +/w;3ﬂ‘)+i(w;+ﬂd~€)] (C-12a)
el.

2 ‘
bJ-X,S - Xﬂ[‘\?'_‘(bd'ﬁvvf —/J‘JIBJ’ K ) —"(,(‘JJJ’ ——;_~ BJ’ES-‘\ (C—l2b)
e AT AR
tv {= BJ(”\ =/ )
These identities can be written in a more symmetric form, as follows:

D f =—yz e 0' ka [@?) (@w)m(u 3 €- u“uakuzj_\ (C-13a)
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kakﬁ = _.V-i-e‘-éo.‘_ﬁxfx[(z\e)*l bk(e/’d)+ L(quk+Ji-/le 6\5 -—-.i/d/Jzakul)] (C—le)

If we multiply these two identities by o «A’ contracting the k and

the g, we arrive at the following identities:

B&Aﬁ'ﬁ— (G \-_—(B L € —/v, JU — B A +A)HB°€) (C-14a)
+ (W, + L BAJJK ;‘Azk@’e.)l

botAXﬁ: X o5 G nb + B+ BJ’&J‘\(‘A)KJDJ‘E> (C-14D)
-Ll(wki-—;-_éj,d)ik-i— + A Bje)]
Aternative expressions for qufﬁand BQAXA could be found by
contracting (C-12) instead of (C-13).
Using (C-12) - (C-14), it is possible to derive the follow-

ing identities:

Scalar Identities

5&,3§,% -X é&,gx/g =z 5'(6’/«)’) (C-15)
+cu[€ +-b(€w“)+z(°“‘“k:[\
= 4 = A \ 3
oz, 0 +X 0z X = 7 3;(6U) (c-16)

+ i [ew’+ & 3, (ea™) +'—le/3f'"ake]
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Vector Identities

T ,
CXJ OZ» (X,,B;Af’f’—fy 6&37(/3) =

‘€ )k 2 B \
B3R SRS LRI CEVRSYENORY
(e C N .
— gebe + AN [f‘wk*-%:é «’A’zk)]

e o

217N
=i

IR x
¥ oz”' (%, 2, 8% + §,3, 1" =

ol€ ‘ ; : o
BPNES {fukak/*j + f’/%[(b Mk-—-BkuJ) ~ " uxane:l (c-18)
+/‘3 5k(€uk) - uj bk(e/“‘k)?;

L\fe—_ ew + 1o, (ea") + 'Teﬁj“‘a e}

Tensor Identities

X

°<’_.

Oy (§ b § - X éXﬁ )

i

'—17 {J— 3(Ba’) — {u, [ew ™+ & L3 (s’ )+;€AJ"R‘>1€:P
23 e —emh] — e .3

Py eud) + aTew' ryewt) Loy, Ju (c-19)
I oo afewt e L)+ e A el
2 k '
"- +Q7A Q,QAJJ _F’d)‘ll [(bkuk__bkuﬂ) kkPq. upb e:l
+ ek, [okul -ddud) - ’“Pi 2 agej
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IR A»

g o ok (¢ amf +J<é x)-

=%9 { 3, (euf) — Lnew+ 4 ded™) + _'{e&“*ale]}
+ {%[B (eu) — deu)| — E’UL"QM}

pU4ept) + afew’ + £alen’) + 4 f“ubxéj,/”k (c-20)
L 2 , - Z[(’wk + < Bﬁ(eﬁ)lk) + prkléxe:l,u,
Jk .
e~ iy

T I S z A ,
ti2 Tzp <f bkﬁ — X BKX ) = 5 9, (Ba) + L S;k (C-21)
X, o= = , ,
Fir Oag (E3, 85+ X730 X%) t = ¥ () + D“Jk (c-22)
where
5 = Clwe + 0 = g d ] (c-23)
Q‘jk - f L/Njwk + _2\: uJBKG - —;\' A)j’e?k‘/’“ﬂ] (0—24)

Spinor Equations

The relations (C-15) - (C-24) are just identities based on
the definitions (C-1) - (C-10). By introducing spinor equations
of motion, and substituting these into the above identities, we

can find the fluid equations of motion in terms of the observebie




App. C 144

quantities defined in (C-1) - (C-10). The spinor equations of

motion are postulated to have the following form:

where

M= m(i+g/er + Rofs)

(C-25a)

(C-25¢)

We shall at times impose the following constraint on the solutions

of (C-25):
B
1, x®) =0
which is equivalent to the constraint
Cos € = 0 =+

or

E =‘('\° P ;(or:'? .-'o— = +1

4 v

€E=T"T for o =-1

(C-26a)

(c-2¢b)

(C-26¢)

where € is the phase angle common to f'd and Xéand o~ is the sign

of the particle charge. The symbolo~ will always represent either
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+1 or -1, but in much of what follows we shall not impose
condition (C—26), with the result that in such cases Co0sS € #o-.
When condition (C-26) is imposed, however, we note that the product

o-cose, which occurs in some of the following expressions, equals +1.

Fluid Equations of Motion

We shall first derive the fluid equations of motion without
imposing the constraint (C-26). In this way it will be possible
to estimate the error imtroduced by neglecting this constraint,

Substituting (C-25) into (C-15) and (C-16), we have from

the real parts of these identities the following relations:

Bj(e/pj) = 3{_3;“ ¢ (c-27a)
where
X = ';Lg (C-27v)
and
9;(eu’) = 0o (0-28)

These equations hold for each of the two charged fluids
individually. (C-28) is just the statement of charge conservation,
or conservation of the number of particles, for each of the two

fluids taken individually,
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Equation (C-27) allows us to estimate the magnitude of € for
the case that we solve (C-25) without imposing the constraint
(C-26). We note that, if we limit ourselves to solutions in
which f and‘/ygare smoothly varying functions whose values
change significantly only over distances comparable with L and
in time intervals greater than L/ , where L. is a length that

specifies the dimensions of the system, then from (C-27) we have
X ) ; X
' —— . J —— ———
‘5\\4 el -| b.j(e/")) NS . (C-gg)

where in the last step we have replaced ; by 4 (defined in (7-47)
in terms of the free, rather than the bound, particle mass)
'because the gravitational and thermal energy of a particle is

small compared with its rest energy. From (C-29) we see that [sin €]
is very small for macroscopic systems., Thus, for such systems,

we have

€t~ & for o1
(c-30)
\Tl"-GlN-f‘—_- for o= -1

where the first case applies to positively charged particles,
and the second case to negatively charged particles.

If we impose the condition (C-26), we have, instead of (C-27)

d(epl) =0 for cose= o (0-31)
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Substituting (C-25) into (C-18), we arrive at two real

vector equations, one of which is the following:

e = e(rcose) e = ZE 3 et) - Thepy e + S (032)

In order to gain an intuitive feeling for this equation, let us

;

examine first the second term on the right side. Using (C-6),

we can derive the following identity:

- Th S (ea) = e e + ke (0-338)
where
~ a—t kJ
mE=— e Y 9, (¢a) (C-330)
and
Ti= (2e)™ €7 w dplepm) — + 2 whu, (6-330)
| Jan

We note that, because of (C-8a) and the antisymmetry of &

T »; =0 (C-34)
Let us evaluate cr'ﬁflfpin the particle rest-frame:
e :
cheT = [=te(w,mm)]

= [Fx(F e ghepa[E] )
Z
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If we interpret %(’F as the particle spin angular momentum density,
then the first term on the right side of (C-35) is just the contri-
bution to the linear momentum density arising from the spin angular
momentum density. This linear momentum density is completely
analogous to the equivalent current density in a magnetized body
that is given by the curl of the magnetization,

In order to understand the second term on the right side of
(C-35), we first note that a body whose 3-velocity is &7 and whose

()
mass and angular momentum in its rest-frame are respectively ™

c—ﬁ

=~ experiences a displacement d of its center-of-mass

(%)

given by the well-known relation:

(C-36)

T Ax(FP)
= 2

Thus (C-35) may be written

-g “‘a
ocheT =[VX( @Wﬂ +{f<m q (c-37)
N N = O
The second term on the right side of (C-37) is the momentum
density that results from the change with time of the mass moment

of a particle.

(*:See

, for example, ref. 10, p. 172, eq. 48. (The difference
in sign between this equation and (C-36) results merely from

a difference in sign in the definition of velocity.)
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Sincem, which is defined in (C-33b), is an invariant, its
value in the particle rest-frame equals its value in all frames.

Thus

o= - 2 Bt =27 G 2B

<

where we have made use of (5-2b). Using (C-36) in (C-38), we

| Cm = —[v-(eu"n%?)] (C-39)

S d
Thus fm is Just the contribution to the mess density that results
from the center-of-mass displacement given by (C-36).

Thus, when we impose the constraint (C-26), the vector equation

(C-32) can be written in the particle rest-frame as follows:

: (o} v - v T
Thew® == emc — c[m(eu"md)] for cose=0o (C-402)

M =z0

Q -
Thed =« [ope(w)wi i, .
= [T (e, [pUED] v CCUR

for Cos € =0

(C=40D)

14

]
This shows us that cR€w is just the rigorously correct expression
for the 4-vector canonieal momentum density including all the spin

effects. ©Since the spin-dependent contribution to the right side
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of (C-40a) is very small compared with @mc , the right side of
(C-40a) is always positive. Because of the presence of the factor o=
on the left, we have the result that the sign of e depends on
the sign of the particle charge. This is exactly what we concluded
from (7-14), which resulted from identifying the direction of
2 3 %

rotation of k and A about }* with the sign of the particle
charge, Thus we see that identifying cos € with o=, the sign of
the particle charge, as we did in (C-26b), has as a consequence
the fact that, for solutions of the spinor equations (C-25),

. > 3 > .
the direction of rotation of k and A about )~ (all derived from
the spinors by means of (7-27)) is dependent on the sign of the
particle charge. This proves the consistency of the two ways of
identifying the sign of particle charge - either as cose, or
, > L3
"as the direction of rotation of k about/u.

We can derive the equation of motion (6-6a) by substituting

(C-32) into (7-44). Doing this, we have
J ) j oo N
—-B @ = Mcu _\‘_o:cﬁ_‘(AJk_\_\a"’) for cose=-0o (C-41a)
where

M= rm + ™ (C-41b)
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is to be regarded as the total mass per particle and

aJ _ %(TTJ—Y'J)= %(TTJ—T\J) (C=41c)
where
_8
A= 3 T TFnes e

12

is the fine-structure constant andTTJ and 7\Jare defined in
(C-33c) and (7-42) respectively. aﬁ is to be regarded as an
effective electromagnetic potential to be associated with the
magnetic moment of the particle. It is to be noted that, whereas
AJ is the same in the dynamical equations for each of the two
charged fluids, a; in (C-4la) represents the two different
potentials &i+) and é{_).

We have already seen in Section III that (C-41) suffices
to yield a complete dynamical description of each charged fluid
for the case of given thermal, gravitational, and electromagnetic
fields.

Equation (C-39) giveswhat might be called a kinetic éxplanna—
tion of the mass incrementf%, based as it .4s on the center-of-mass
displacement produced by the motion of the particle. We shall

now derive an electromagnetic explanation., First, we arrive at an
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expression for (EJ’I/\k -—Bk?«\j) by taking the curl of (C-4la):

@J'un _ Bku.)') - WOk tam — ukbjﬂmM B %(FJMPFJK) (Cs28)
where

A PLR LT (C=42b)
Now we note that (C-33b) can be rewritten as follows:

M= Zceub(m&\* RA/ oY, fA)Jk@JM'BMJ) (C-43)

where we have made use of (C-8a) and the antisymmetry of A)Jk

Substituting (C-42) into (C-43), we have

~ ﬁ J‘k kin o ;
m = "f'q‘.Mc:3 » <FJ'K+£)'\\) - '+MC3 /U)J[ Mk(an*' -F"”),( (0-44)

where, in the second step, we have used (C-6). Evaluating the

invariant VWJCZ in the particle rest-frame, we have
o
=—| I (n . C-
mc [Mc(z/”> (8 +5) (C-45)

where we have used (2-20) and (5-6). Thus M is the mass corresponding
. . c s 1 3. :

to the interaction energy of a magnetic dipole ch/»- in a magnetic
Y magnitude of the 4

field (R+b ). We note that theAgyromagnetic ratio is ;\f\”' ,

which is the same value we obtain from the Dirac Theory, except

that in our case the particle mass M includes the thermal,
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gravitational, and dipole-interaction energy contributions to the

mass, as well as the rest mass.

Magnitude of Spin-Dependent Electromagnetic Field

Now let us estimate the magnitudes of &j and FJK. If we
regard the magnitudes of uj,/v), and ,A)Jk as being of order unity,
and consider only solutions for which these quantities, as well
as Le, change significantly only over a distance of order L. and

in times intervals greater than L4 , then from (C-33c) we have
J |
—_— C-46
|| A~ 4 (C-46)
Thus from (7-43), (C-46), and (C-41c), we have
|13 ~ X (C-47)
% L
and from (C-42b), it follows that

A (C-48)

Gauge Transformations

Now let us study the effect of a gauge transformation on
o f \
equation (C-4la). Let A ) ana AJ differ only by the gauge trans-

formation generated by the scalar function)z, i.e.

+o ¥ (C-49)
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Substituting this into (C-41a), we have
J 1 ~ g
T3(@+7EY) = Meu + TE(AMeaY) (50

Thus we see that a gauge transformation is equivalent to adding
a scalar function to the de Broglie phase function @ (or Hamilton's
Characteristic Function).

Ir £ and ){ are the solutions to the spinor equations (C-25)

~d

in which A~ is used to describe the electromagnetic field, whereas
= 3 . . . . .
£ and X~ are the solutions resulting when the field is described
]
by A", then we find from (C-50), (7-8), and (7-33), or by direct

substitution of (C-49) into (C-25), that

R —L({%’Z) A -é,x??
£° = e f = € :/3 (C—ila)

+é<%w

fﬁ — e X/g - e-i—dd’?k/ﬁ (C—5lb)

where
7? = _7Z_ (C-51c)

is the dimensionless form of?, and & is the fine-structure
constant introduced in (C-41d).. Thus we see that a gauge

transformation is equivalent to a phase change of the spinors.
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From (C-50) it is evident that it is always possible to choose '}z

so that § has the form
@:—Mczt (C-52)

Using (7-8), (7-33), and (C-52), we see that, for such a choice

of gauge, _f/s and Z/s may be written as follows:

o me?

» —_—t 'e

_f/ﬁ: QL 4 ) [( -ev—.i—c )l/z f\,g:( (C-53a)
_l(emet ‘ -

/»t/g: e L( * t) [< ﬁv_%:€> V2 i _( (C-53b)

The significance of this way of writing the spinors is that it
shows that they can always be written in a form such that the fast
time dependence is completely contained in a phase factor whose
time dependence is given by the de Broglie frequency but which
has no spatial dependence. For a magnetogas-dynamical system in
which all the observable quantities are time-independent, the
square brackets in (C-53) are completely time independent. In
such a case f'g andllg are irreducible representations of the
symmetry operation consisting of a displacement of the origin of
the observer's time axis. Thus it would seem that the choice of
gauge that corresponds to (C-52), and hence to (C-53), has a

fundamental significance that other choices, such as the

Lorentg” Gauge, do not enjoy.
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Error Caused by Variable €

The relations (C-41) assumes that the constraint (C-26) is
satisfied. In order to estimate the effect of neglecting this
constraint, we substitute (C-32) for arbitrary € into (7-44)

and obtain

—-&J@:[rcose)v\;\-—i—f—bJei-m] cu’
"2y B I d e24)
+ C'(Amﬁ.+;§/~d_,lé_

Thus the effect of not holding € constant is to introduce an error

AeM into the mass and an error L\GA'j into the 4-potential, where

Aem::-_n\j](l—c-cos &) —CEZK kak€ (C-55)
Vo & udde o ke piyk _
AA' = ﬁp_,r—wr/*ub,\e (c-56)
Using (C-30), we have
2
’I— & ces e) r~ ('X/L_) (c-57)
l""t’ m ée

MBS R A S m (A (s

2c | = T,

-
[peh’| ~ B2 &)~ B K= (2)(2) o)
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For the purposes of an estimate, we may replace m in (C-55)

withm.

Thus from (C-55), (C-57), and (C-58), we have

|dem|~e m(a/L)"

Using (C-47), we can write (C-59) as follows:

A A~ | 271 (A1)

which shows immediately that, for all macroscopic dynamical

systems,Ag_AJ is a fortiori negligible if a’ is negligible.

In order to gain an intuitive feeling for the significance

of (C-60), let us regard Agm as being caused by an error Ae‘e\, in

App. C

(C-60)

(Cc-61)

the specific enthalpy. Since the effective mass associated with -ﬁ,

is m{£/c*), we have

| At~ /L)

Using (2-2b) and (2-9), Ae'ﬁ, can in turn be expressed as an

equivalent error ¢l in the temperature:

o ‘ "M 5 ey 2
AT~ B ot ~ 55 (W)

142 oy
/ul_q_._.g‘?al‘ for protons
L

- for electrons

(C-62)

(C-63)
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which shows immediately that, for systems on a macroscopic scale,

A¢T (and hence A¢m) is completely negligible.

Precession of Particle Spin

Substituting the spinor equations of motion (C-25) into the
complex identity (C-18) yields two real vector equations. One

of these is (C-32). The other is
' k ’ ; Y
w’ o 0 = p [(édu“—b“ y) -’ "uﬁnq (C-64)

where we have made use of (C-27) and (C-28).
As a preliminary to explaining the physical significance of

J
(C-64), we first introduce the 4-vector ) defined as follows:

Jkdn

) % £ u@fin (C-65)

50)

J
The physical significance of ()} becomes clear when we consider

its value in the fluid rest-frame:

o °

nN° =0 ; D=0} =+@x~ (c-66)

nr=o M=0

J
Thus f) is just the four-dimensional generalization of the local
angular velocity associated with the fluid vorticity..

J
The following identity follows from the definition of f):

(3] = 2 e ks ) o
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Thus
35 k Bk j _ 2 _jk,eﬂ ( k Jz‘(j
po;(U) = E (€ zu_n.n)—-au/wjz? (C-69)
and (C-64) becomes
k ]
J JKan 14
— : € 4 (C-69)
= € w05 0e) - Uiy
In the fiuid rest-frame we have
° >
5_&1‘. - L </:’ d~ (C-70a)
'T < A'r N=0
0
>
= € C-70b
A[( sYOXZ |, (c-70)
Equation (C-70a) is just an identity. This is most easily
seen by noting that the last term on the right side of (C-69)
can be transformed as follows:
JI )
k U K
a9 B o oy L (c-71)

Making this transformation in (C-69), (C-70a) becomes the identity
° l
w \

e = (wnd ) = ().,

G

As a preliminary to interpreting (C-70b), we substitute (C-42)

into (C-65)0 and obtain

J o JkAn o
L= Lﬁ%‘a S RUTRRLTY (0-73)
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In the fluid rest~frame this becomes

Q

N°=o0 1 =- Ei(éo’ﬂ-g) (C=74)

~ME

which is just the Larmor Condition we met in (2-44). Thus
. (C-73) is the relativistic statement of the Larmor Condition.

If we substitute (C-74) into (C-70b), we obtain

oh s 2 % N
( /’“) <1MC/~)X<B +h) + "‘Zc/wm_;}e (C-75)

Neglecting for the moment the second term on the right, which
vanishes when we impose the constraint (C-26), we see that this
equation describes the precession in its own rest-frame of a

particle having spin angular momentum %_F,«% and a magnetic dipole

% =
2ME

[AY

moment /~1n a magnetic field(8 w) These values correspond

to the gyromagnetic ratio _°___§‘_

H MC_ L d
The second term on the right corresponds to an additional

precession whose angular velocity is —-Cﬁ‘e. With the same basic

assumptions used in making previous estimates, we find

\o%/:‘? X;é #]C.
% %, =, N T (c-76)
- | 2o A R(B+E) HE+E| L

In the case of a system of laboratory dimensions, we can take

3
L~1cm and ]B \~1gauss. We have already seen that for such a
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)

case tk‘f' << Bo»l’and s0 E?can be neglected. Thus we find that
the ratio (C-76) of the precession velocitiés is of order lO-7. For
largerL.oré%, the ratio would be even smaller. Thus, for
macroscopic systems, the spurious precessiop resulting from not
holding € constant (i.e. not imposing the constraint (C-26))

is con@leﬁely negligible compared with the real precession given
by the first term on the right side of (C-75).

Finally we note that, substituting the spinor equations
(C-25) into (C-l9), we obtain from the -imaginary antisymmetric
part of this equation

uxax A)Jk — A}J’e [(Bluk— 5ku,z) _ Sﬁkmm %GJ
_A’k)( [(Bxuj—BJux) — gtikg ’*(@qéj (c-77)
where we have made use of (C-28) and (C-32). (C-77) is equivalent
to (C-64), except that the spin has been represented by the tensor
Adk instead of the Vector/uﬁ. The 3-vector equation obtained by
writing the ‘space-like components of (C-77) in the particle rest-

frame is just (C-70b), which has already been discussed.

Stress-Energy Tensor

Substituting the spinor equations of motion (C-25) into (C-21),

the imaginary part Qf the resulting equation yields

Lo, (%027 - k%2 1)| =9'Z;, (0-78)
= %956 Bk% + g'jf 'Z(xak Aﬂ
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where 5} is defined in (C-23). As a preliminary to explaining
;
this relation, let us define a 4-vector ﬂo, as follows:
J i e
/lo) =ochw” — _310 Al (¢-79)
Since ohew” has been interpreted as the total (or canonical)
particle momentum, including spin effects and the contribution
-
of the external electromagnetic field, 4o is just the inertial
part of the particle momentum, including spin effects. From
(C-32) we have
‘)' v J ) kd )
_ o Adk
Using (C-33), this can also be written

J‘ o . J' ,
7101 = [(c'cos e)m-\—ﬁ]cu\)-\-rﬁﬁ ——O—;‘EXJJRQKE (c-81)
Mo. Now, let msidefine thhe;[t,ensorf[:-kra‘s follows:

T. = othc SJT‘K - O“@F%AK

Ik

I

£
< fus o+ T e — TE U ]
From (C-82), (C-21), and (C-23) we have
T ohe b, (7388 3| - e qued (et Y A (o)

which expresses TJK directly in terms of the spinors €™ and ¥
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Substituting (C-82) into (C-78) and using (C-28), we have
bjT"p/ es€) O (M) + & ), A~ I A 1(08)
Sk—\\G'CuSSJ Ok \ ﬁ_f’(uk/-\! 01 k)u -84

For the case in which condition (C-26) is satisfied, (C-84)

becomes

£

VT = €3 (Mc*) +ogPF,

for cos g=o (c-85)

where'kais the force density defined in (6-16).

We note that (C-85) is identical with (6-15) except that
the contraction‘on the left side of (C-85) involves the first
index, instead of the second as in (6-15). We shall now show
that BJ - B)T;S (wthh is not obv1ous, since-'T}K is not
symmetric).

Substituting the spinor equations of motion into the identity
(C-19), we have from the real antisymmgtric part of the resulting

equation the following relation:

Ji[aYe/Nk) «’/’“‘)_-1 Eakzn Sm - %‘E‘SJKM”XA') (C-86)

Contracting this with.g_mjk and using (C-82), we arrive at the

following:

m

L =

'clT( k_—[&_d) = _0'_;_51_ sikznbf(@uﬂ) (C-87)
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Because the divergence of the right side vanishes, we have the

desired result:

ST o= YT

JK kJ

Thus (C-85) is identical with (6-15), and we are justified in

interpreting Tjk as the stress-energy tensor for the fluid.

(c-88)

Substituting (C-80) into (C-82), we have for the case cos €= &

' O 2,4k fc £
T = pmerwut= TR y(ea) - s u,

Comparing with (6-11), we have
) ! k JL
= sy () + e 0| fer cs e
~ where t'™ is the spin-dependent part of T
As discussed in Section V, the fluid energy density is
: o0 : : i :
given byT ; the fluid energy flux density Z{# (designated by
J ed
Z(@) in Section V) is given by ¢ 1 ; and the fiuid momentum
j i
2

It can be shown that in the fluid rest-frame these quantities

J
density,&,ﬂ (designated by/&

assume the following form:

°©
T°° = e(M+m™)c* for cosezo

in Section V) is given by é—TJO.

(¢-90)

(C-91)
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zz) =C’~€[d§b¥\z}r + C [Vxe( /f)] for cos e =& (C-92)
= \"d(mdﬂ Loy cos g=o (c-93)

—p
where d is defined in (C-36). These expressions make the role
of particle spin intuitively evident. The first term on the right
side of (C-92) is the energy flux arising from the change in

displacement of the center-of-mass of an accelerating particle
O
»

having spin. ,&# is just the corresponding momentum density.

The second term on the right side of (C-92) is the energy flux

associated with the linear momentum density arising from the spin

angular momentum. If this term (divided by c®) were to appear
,& 40 as well, it would, when we came to calculate the angular

momentum density V‘x,&‘p associated with T , give rise to an

angular momentum contribution that had its origin 1;’1 the particle

spin. The fact that this term does not appear in /;;eis

conse 1stent with the fact that we treat the spin angular momentum

densityja as a separate contribution that is not included in ¥ K,&?‘?.

Angular Momentum

From (C-85) and (C-88), we obtain the following:

(P -T2 YR TR T G ) o
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Substituting this into (C-87), we have

3M = LI g = ) (c-95a)
where

Mk -___JJ'KI N Jé_(//’j_rkﬁ_/{'k—rjﬂ) (c-95b)
and |

' 1 U
X/Jk = — O’_l_ EJK'“<€/U~’V]> (C-95¢)

As shown in Section V, (C-95a) and (C-95b) constitute the dif-
ferential form of the statement of conservation of angular

momentum, whose integral form is
> 5 > =>
fff(ﬁ +rx/&¢¢)a‘/3 =j<7>< £)dVy (C-96a)
‘s K
where from (C-95¢) we have

,X, = (113°;j3lj /dwla)' — c—% e/’z — (euu)<c—%§_ —/7:;0) (C-96b)

The integrand on the left in (C-96a) is the total angular momentum
density, and the integrand on the right is the torque density.
- o,
Since,g is the spin angular momentum density, and (€U) is the
particle density in the observer's reference frame, we see from
-

(C-96b) that r—i-% is to be interpreted as the spin angular

momentum of a single particle as seen in the observer's frame,
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